Skip to main content

On a Weakly Supervised Classification Problem

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2021)

Abstract

We consider a weakly supervised classification problem. It is a classification problem where the target variable can be unknown or uncertain for some subset of samples. This problem appears when the labeling is impossible, time-consuming, or expensive. Noisy measurements and lack of data may prevent accurate labeling. Our task is to build an optimal classification function. For this, we construct and minimize a specific objective function, which includes the fitting error on labeled data and a smoothness term. Next, we use covariance and radial basis functions to define the degree of similarity between points. The further process involves the repeated solution of an extensive linear system with the graph Laplacian operator. To speed up this solution process, we introduce low-rank approximation techniques. We call the resulting algorithm WSC-LR. Then we use the WSC-LR algorithm for analysis CT brain scans to recognize ischemic stroke disease. We also compare WSC-LR with other well-known machine learning algorithms.

The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no FWNF-2022-0015). The work was partly supported by RFBR grant 19-29-01175. A. Litvinenko was supported by funding from the Alexander von Humboldt Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armi, L., Fekri-Ershad, S.: Texture image analysis and texture classification methods-a review. arXiv preprint arXiv:1904.06554 (2019)

  2. Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109(4), 719–760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(85), 2399–2434 (2006). http://jmlr.org/papers/v7/belkin06a.html

  4. Berikov, V., Litvinenko, A.: Weakly supervised regression using manifold regularization and low-rank matrix representation. In: Pardalos, P., Khachay, M., Kazakov, A. (eds.) MOTOR 2021. LNCS, vol. 12755, pp. 447–461. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77876-7_30

    Chapter  Google Scholar 

  5. Berikov, V.: Semi-supervised classification using multiple clustering and low-rank matrix operations. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 529–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_37

    Chapter  MATH  Google Scholar 

  6. Berikov, V., Litvinenko, A.: Semi-supervised regression using cluster ensemble and low-rank co-association matrix decomposition under uncertainties. In: Proceedings of 3rd International Conference on Uncertainty Quantification in CSE, pp. 229–242 (2020). https://doi.org/10.7712/120219.6338.18377. https://files.eccomasproceedia.org/papers/e-books/uncecomp_2019.pdf

  7. Borisova, I.A., Zagoruiko, N.G.: Algorithm FRiS-TDR for generalized classification of the labeled, semi-labeled and unlabeled datasets. In: Aleskerov, F., Goldengorin, B., Pardalos, P.M. (eds.) Clusters, Orders, and Trees: Methods and Applications. SOIA, vol. 92, pp. 151–165. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0742-7_9

    Chapter  MATH  Google Scholar 

  8. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  9. Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote. Sens. 28(1), 45–62 (2002)

    Article  Google Scholar 

  10. Drineas, P., Mahoney, M.W., Cristianini, N.: On the Nyström method for approximating a gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 6, 2153–2175 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Iterative algorithms for the post-processing of high-dimensional data. J. Computat. Phys. 410, 109396 (2020). https://doi.org/10.1016/j.jcp.2020.109396. https://www.sciencedirect.com/science/article/pii/S0021999120301704

  12. Gao, W., Wang, L., Li, Y.F., Zhou, Z.H.: Risk minimization in the presence of label noise. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016). https://ojs.aaai.org/index.php/AAAI/article/view/10293

  13. Gaudioso, M., Giallombardo, G., Miglionico, G., Vocaturo, E.: Classification in the multiple instance learning framework via spherical separation. Soft. Comput. 24(7), 5071–5077 (2019). https://doi.org/10.1007/s00500-019-04255-1

    Article  MATH  Google Scholar 

  14. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \(\cal{H} \)-matrices. Computing 70(4), 295–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guttorp, P., Gneiting, T.: Studies in the history of probability and statistics XLIX: on the Matérn correlation family. Biometrika 93, 989–995 (2006). https://doi.org/10.1093/biomet/93.4.989

    Article  MathSciNet  MATH  Google Scholar 

  16. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  17. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Litvinenko, A., Keyes, D., Khoromskaia, V., Khoromskij, B.N., Matthies, H.G.: Tucker Tensor analysis of Matern functions in spatial statistics. Comput. Methods Appl. Math. 19(1), 101–122 (2019). https://doi.org/10.1515/cmam-2018-0022

    Article  MathSciNet  MATH  Google Scholar 

  19. Litvinenko, A., Kriemann, R., Genton, M.G., Sun, Y., Keyes, D.E.: HLIBCov: parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification. MethodsX 7, 100600 (2020). https://doi.org/10.1016/j.mex.2019.07.001. https://github.com/litvinen/HLIBCov.git

  20. Litvinenko, A., Sun, Y., Genton, M.G., Keyes, D.E.: Likelihood approximation with hierarchical matrices for large spatial datasets. Comput. Stat. Data Anal. 137, 115–132 (2019). https://doi.org/10.1016/j.csda.2019.02.002. https://github.com/litvinen/large_random_fields.git

  21. Matérn, B.: Spatial Variation. Lecture Notes in Statistics, vol. 36, 2nd edn. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  22. Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled instances. J. Intell. Inf. Syst. 22(1), 89–109 (2004). https://doi.org/10.1023/A:1025832930864

    Article  MATH  Google Scholar 

  23. Pardalos, P.M., Georgiev, P.G., Papajorgji, P., Neugaard, B.: Systems Analysis Tools for Better Health Care Delivery, vol. 74. Springer, Heidelberg (2013)

    Book  Google Scholar 

  24. Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11(43), 1297–1322 (2010). http://jmlr.org/papers/v11/raykar10a.html

  25. Saber, E.S., Tekalp, A.M.: Integration of color, edge, shape, and texture features for automatic region-based image annotation and retrieval. J. Electron. Imaging 7(3), 684–700 (1998)

    Article  Google Scholar 

  26. Skourt, B.A., El Hassani, A., Majda, A.: Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 127, 109–113 (2018)

    Article  Google Scholar 

  27. Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)

    Article  Google Scholar 

  28. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with deep neural networks: a survey. arXiv preprint arXiv:2007.08199 (2020)

  29. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, Y., Yin, Z., Liu, B.: A similarity-based two-view multiple instance learning method for classification. Knowl.-Based Syst. 201–202, 105661 (2020). https://doi.org/10.1016/j.knosys.2020.105661

  31. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Proceedings of the 16th International Conference on Neural Information Processing Systems, NIPS 2003, pp. 321–328. MIT Press, Cambridge (2003)

    Google Scholar 

  32. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRCPress, Boca Raton (2012)

    Book  Google Scholar 

  33. Zhou, Z.H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5(1), 44–53 (2017). https://doi.org/10.1093/nsr/nwx106. https://academic.oup.com/nsr/article-pdf/5/1/44/31567770/nwx106.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Berikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berikov, V., Litvinenko, A., Pestunov, I., Sinyavskiy, Y. (2022). On a Weakly Supervised Classification Problem. In: Burnaev, E., et al. Analysis of Images, Social Networks and Texts. AIST 2021. Lecture Notes in Computer Science, vol 13217. Springer, Cham. https://doi.org/10.1007/978-3-031-16500-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16500-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16499-6

  • Online ISBN: 978-3-031-16500-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics