Abstract
We consider a weakly supervised classification problem. It is a classification problem where the target variable can be unknown or uncertain for some subset of samples. This problem appears when the labeling is impossible, time-consuming, or expensive. Noisy measurements and lack of data may prevent accurate labeling. Our task is to build an optimal classification function. For this, we construct and minimize a specific objective function, which includes the fitting error on labeled data and a smoothness term. Next, we use covariance and radial basis functions to define the degree of similarity between points. The further process involves the repeated solution of an extensive linear system with the graph Laplacian operator. To speed up this solution process, we introduce low-rank approximation techniques. We call the resulting algorithm WSC-LR. Then we use the WSC-LR algorithm for analysis CT brain scans to recognize ischemic stroke disease. We also compare WSC-LR with other well-known machine learning algorithms.
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no FWNF-2022-0015). The work was partly supported by RFBR grant 19-29-01175. A. Litvinenko was supported by funding from the Alexander von Humboldt Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armi, L., Fekri-Ershad, S.: Texture image analysis and texture classification methods-a review. arXiv preprint arXiv:1904.06554 (2019)
Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109(4), 719–760 (2020)
Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(85), 2399–2434 (2006). http://jmlr.org/papers/v7/belkin06a.html
Berikov, V., Litvinenko, A.: Weakly supervised regression using manifold regularization and low-rank matrix representation. In: Pardalos, P., Khachay, M., Kazakov, A. (eds.) MOTOR 2021. LNCS, vol. 12755, pp. 447–461. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77876-7_30
Berikov, V.: Semi-supervised classification using multiple clustering and low-rank matrix operations. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 529–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_37
Berikov, V., Litvinenko, A.: Semi-supervised regression using cluster ensemble and low-rank co-association matrix decomposition under uncertainties. In: Proceedings of 3rd International Conference on Uncertainty Quantification in CSE, pp. 229–242 (2020). https://doi.org/10.7712/120219.6338.18377. https://files.eccomasproceedia.org/papers/e-books/uncecomp_2019.pdf
Borisova, I.A., Zagoruiko, N.G.: Algorithm FRiS-TDR for generalized classification of the labeled, semi-labeled and unlabeled datasets. In: Aleskerov, F., Goldengorin, B., Pardalos, P.M. (eds.) Clusters, Orders, and Trees: Methods and Applications. SOIA, vol. 92, pp. 151–165. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0742-7_9
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)
Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote. Sens. 28(1), 45–62 (2002)
Drineas, P., Mahoney, M.W., Cristianini, N.: On the Nyström method for approximating a gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 6, 2153–2175 (2005)
Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Iterative algorithms for the post-processing of high-dimensional data. J. Computat. Phys. 410, 109396 (2020). https://doi.org/10.1016/j.jcp.2020.109396. https://www.sciencedirect.com/science/article/pii/S0021999120301704
Gao, W., Wang, L., Li, Y.F., Zhou, Z.H.: Risk minimization in the presence of label noise. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016). https://ojs.aaai.org/index.php/AAAI/article/view/10293
Gaudioso, M., Giallombardo, G., Miglionico, G., Vocaturo, E.: Classification in the multiple instance learning framework via spherical separation. Soft. Comput. 24(7), 5071–5077 (2019). https://doi.org/10.1007/s00500-019-04255-1
Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \(\cal{H} \)-matrices. Computing 70(4), 295–334 (2003)
Guttorp, P., Gneiting, T.: Studies in the history of probability and statistics XLIX: on the Matérn correlation family. Biometrika 93, 989–995 (2006). https://doi.org/10.1093/biomet/93.4.989
Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021)
Litvinenko, A., Keyes, D., Khoromskaia, V., Khoromskij, B.N., Matthies, H.G.: Tucker Tensor analysis of Matern functions in spatial statistics. Comput. Methods Appl. Math. 19(1), 101–122 (2019). https://doi.org/10.1515/cmam-2018-0022
Litvinenko, A., Kriemann, R., Genton, M.G., Sun, Y., Keyes, D.E.: HLIBCov: parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification. MethodsX 7, 100600 (2020). https://doi.org/10.1016/j.mex.2019.07.001. https://github.com/litvinen/HLIBCov.git
Litvinenko, A., Sun, Y., Genton, M.G., Keyes, D.E.: Likelihood approximation with hierarchical matrices for large spatial datasets. Comput. Stat. Data Anal. 137, 115–132 (2019). https://doi.org/10.1016/j.csda.2019.02.002. https://github.com/litvinen/large_random_fields.git
Matérn, B.: Spatial Variation. Lecture Notes in Statistics, vol. 36, 2nd edn. Springer, Berlin (1986)
Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled instances. J. Intell. Inf. Syst. 22(1), 89–109 (2004). https://doi.org/10.1023/A:1025832930864
Pardalos, P.M., Georgiev, P.G., Papajorgji, P., Neugaard, B.: Systems Analysis Tools for Better Health Care Delivery, vol. 74. Springer, Heidelberg (2013)
Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11(43), 1297–1322 (2010). http://jmlr.org/papers/v11/raykar10a.html
Saber, E.S., Tekalp, A.M.: Integration of color, edge, shape, and texture features for automatic region-based image annotation and retrieval. J. Electron. Imaging 7(3), 684–700 (1998)
Skourt, B.A., El Hassani, A., Majda, A.: Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 127, 109–113 (2018)
Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)
Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with deep neural networks: a survey. arXiv preprint arXiv:2007.08199 (2020)
van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6
Xiao, Y., Yin, Z., Liu, B.: A similarity-based two-view multiple instance learning method for classification. Knowl.-Based Syst. 201–202, 105661 (2020). https://doi.org/10.1016/j.knosys.2020.105661
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Proceedings of the 16th International Conference on Neural Information Processing Systems, NIPS 2003, pp. 321–328. MIT Press, Cambridge (2003)
Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRCPress, Boca Raton (2012)
Zhou, Z.H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5(1), 44–53 (2017). https://doi.org/10.1093/nsr/nwx106. https://academic.oup.com/nsr/article-pdf/5/1/44/31567770/nwx106.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Berikov, V., Litvinenko, A., Pestunov, I., Sinyavskiy, Y. (2022). On a Weakly Supervised Classification Problem. In: Burnaev, E., et al. Analysis of Images, Social Networks and Texts. AIST 2021. Lecture Notes in Computer Science, vol 13217. Springer, Cham. https://doi.org/10.1007/978-3-031-16500-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-16500-9_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16499-6
Online ISBN: 978-3-031-16500-9
eBook Packages: Computer ScienceComputer Science (R0)