Skip to main content

AugPaste: One-Shot Anomaly Detection for Medical Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13576))

Included in the following conference series:

Abstract

Due to the high cost of manually annotating medical images, especially for large-scale datasets, anomaly detection has been explored through training models with only normal data. Lacking prior knowledge of true anomalies is the main reason for the limited application of previous anomaly detection methods, especially in the medical image analysis realm. In this work, we propose a one-shot anomaly detection framework, namely AugPaste, that utilizes true anomalies from a single annotated sample and synthesizes artificial anomalous samples for anomaly detection. First, a lesion bank is constructed by applying augmentation to randomly selected lesion patches. Then, MixUp is adopted to paste patches from the lesion bank at random positions in normal images to synthesize anomalous samples for training. Finally, a classification network is trained using the synthetic abnormal samples and the true normal data. Extensive experiments are conducted on two publicly-available medical image datasets with different types of abnormalities. On both datasets, our proposed AugPaste largely outperforms several state-of-the-art unsupervised and semi-supervised anomaly detection methods, and is on a par with the fully-supervised counterpart. To note, AugPaste is even better than the fully-supervised method in detecting early-stage diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: CVPR (2020)

    Google Scholar 

  2. Burlina, P., Paul, W., Liu, T.A., Bressler, N.M.: Detecting anomalies in retinal diseases using generative, discriminative, and self-supervised deep learning. JAMA Ophthalmol. 140(2), 185–189 (2022)

    Article  Google Scholar 

  3. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)

    Google Scholar 

  4. Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6

    Chapter  Google Scholar 

  5. Graham, B.: Kaggle diabetic retinopathy detection competition report. University of Warwick, pp. 24–26 (2015)

    Google Scholar 

  6. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recogn. 70, 25–43 (2017)

    Article  Google Scholar 

  7. Hong, R., Halama, J., Bova, D., Sethi, A., Emami, B.: Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 67(3), 720–726 (2007)

    Google Scholar 

  8. Huang, Y., Lin, L., Cheng, P., Lyu, J., Tang, X.: Lesion-based contrastive learning for diabetic retinopathy grading from fundus images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 113–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_11

    Chapter  Google Scholar 

  9. Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection

  10. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: CVPR (2021)

    Google Scholar 

  11. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Google Scholar 

  12. Lin, L., Li, M., Huang, Y., Cheng, P., Xia, H., et al.: The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading. Sci. Data 7(1), 1–10 (2020)

    Google Scholar 

  13. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  14. Morozov, S.P., Andreychenko, A.E., Pavlov, N.A., Vladzymyrskyy, A.V., Ledikhova, N.V., et al.: MosMedData: chest CT scans with Covid-19 related findings dataset. arXiv preprint (2020). arXiv:2005.06465

  15. Pang, G., Ding, C., Shen, C., Hengel, A.V.D.: Explainable deep few-shot anomaly detection with deviation networks. arXiv preprint (2021). arXiv:2108.00462

  16. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Google Scholar 

  17. Perera, P.: OCGAN: one-class novelty detection using GANs with constrained latent representations. In: CVPR (2019)

    Google Scholar 

  18. Porwal, P., et al.: Indian diabetic retinopathy image dataset (IDRID): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)

    Article  Google Scholar 

  19. Quellec, G., Lamard, M., Conze, P.H., Massin, P., Cochener, B.: Automatic detection of rare pathologies in fundus photographs using few-shot learning. Med. Image Anal. 61, 101660 (2020)

    Google Scholar 

  20. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  21. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: CVPR (2021)

    Google Scholar 

  22. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Google Scholar 

  23. Tian, Yu., Maicas, G., Pu, L.Z.C.T., Singh, R., Verjans, J.W., Carneiro, G.: Few-shot anomaly detection for polyp frames from colonoscopy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 274–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_27

  24. Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)

    Google Scholar 

  25. Zavrtanik, V., Kristan, M., Skočaj, D.: DRAEM-A discriminatively trained reconstruction embedding for surface anomaly detection. In: CVPR (2021)

    Google Scholar 

  26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  27. Zhou, K., et al.: Encoding structure-texture relation with P-net for anomaly detection in retinal images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 360–377. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_22

Download references

Acknowledgement

This study was supported by the Shenzhen Basic Research Program (JCYJ20190809120205578); the National Natural Science Foundation of China (62071210); the Shenzhen Science and Technology Program (RCYX20210609103056042); the Shenzhen Basic Research Program (JCYJ20200925153847004); the Shenzhen Science and Technology Innovation Committee (KCXFZ2020122117340001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, W., Huang, Y., Tang, X. (2022). AugPaste: One-Shot Anomaly Detection for Medical Images. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics