Skip to main content

Fundus Photograph Defect Repair Algorithm Based on Portable Camera Empty Shot

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13576))

Included in the following conference series:

Abstract

Fundus photograph is an important basis for ophthalmologists to diagnose retinal diseases. Due to the limitations of the optical system design for portable fundus cameras, there still exist typical image defects leading to low quality images. There are stray light defects such as atomization area, shadow ring, bright spot, central dark hole and so on. Since the camera empty shot in a dark environment can reflect important device-specific characteristics of typical defects, we propose a novel framework to execute image defects repairing by template compensation based on camera empty shots for portable fundus cameras. First, noise reduction is employed from a camera empty shot image. Then, a defect compensation template based on empty shot is generated. For each fundus image, an adjusted ratio is optimized in different defect areas of the customized compensation template. Finally, this template is applied to compensate and repair the stray light defects in order to improve image quality for the target image captured from the same camera. Experimental results show that our proposed method is effective, and it is able to obtain fundus images in better quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  2. Kim, J.Y., Kim, L.S., Hwang, S.H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)

    Article  Google Scholar 

  3. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  4. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  5. Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)

    Article  Google Scholar 

  6. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  7. Ballester, C., Bertalmio, M., Caselles, V., et al.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertalmio, M., Sapiro, G., Caselles, V., et al.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

    Google Scholar 

  9. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346 (2001)

    Google Scholar 

  10. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1033–1038. IEEE (1999)

    Google Scholar 

  11. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Google Scholar 

  12. Simakov, D., Caspi, Y., Shechtman, E., et al.: Summarizing visual data using bidirectional similarity. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  13. Barnes, C., Shechtman, E., Finkelstein, A., et al.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  14. Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.: Mask-specific inpainting with deep neural networks. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 523–534. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_43

    Chapter  Google Scholar 

  15. Xu, L., Ren, J.S., Liu, C., et al.: Deep convolutional neural network for image deconvolution. Adv. Neural. Inf. Process. Syst. 27, 1790–1798 (2014)

    Google Scholar 

  16. Pathak, D., Krahenbuhl, P., Donahue, J., et al.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  17. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  18. Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422 (2018)

  19. Yu, J., Lin, Z., Yang, J., et al.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  21. Yu, J., Lin, Z., Yang, J., et al.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  22. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)

    Article  Google Scholar 

  23. Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 1–9 (2008)

    Article  Google Scholar 

  24. Tan, R.: Visibility in bad weather from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  25. Tarel, J.P., Nicolas, H.: Fast visibility restoration from a single color or gray level image. In: IEEE 12th International Conference on Computer Vision (ICCV), pp. 2201–2208 (2009)

    Google Scholar 

  26. Wang, Y., Fan, C.: Single image defogging by multiscale depth fusion. IEEE Trans. Image Process. 23(11), 4826–4837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xia, W., Chen, E.C.S., Pautler, S.E., et al.: A global optimization method for specular highlight removal from a single image. IEEE Access 7, 125976–125990 (2019)

    Article  Google Scholar 

  28. Guo, J., Zhou, Z., Wang, L.: Single image highlight removal with a sparse and low-rank reflection model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 282–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_17

    Chapter  Google Scholar 

  29. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  32. Zhang, T., et al.: Noise adaptation generative adversarial network for medical image analysis. IEEE Trans. Med. Imaging 39(4), 1149–1159 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-129), and BJNSF (No. 4202033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J. et al. (2022). Fundus Photograph Defect Repair Algorithm Based on Portable Camera Empty Shot. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics