Skip to main content

Detection of Diabetic Retinopathy Using Longitudinal Self-supervised Learning

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Abstract

Longitudinal imaging is able to capture both static anatomical structures and dynamic changes in disease progression towards earlier and better patient-specific pathology management. However, conventional approaches for detecting diabetic retinopathy (DR) rarely take advantage of longitudinal information to improve DR analysis. In this work, we investigate the benefit of exploiting self-supervised learning with a longitudinal nature for DR diagnosis purposes. We compare different longitudinal self-supervised learning (LSSL) methods to model the disease progression from longitudinal retinal color fundus photographs (CFP) to detect early DR severity changes using a pair of consecutive exams. The experiments were conducted on a longitudinal DR screening dataset with or without those trained encoders (LSSL) acting as a longitudinal pretext task. Results achieve an AUC of 0.875 for the baseline (model trained from scratch) and an AUC of 0.96 (95% CI: 0.9593-0.9655 DeLong test) with a p-value <2.2e–16 on early fusion using a simple ResNet alike architecture with frozen LSSL weights, suggesting that the LSSL latent space enables to encode the dynamic of DR progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 15 September 2022

    In an older version of this chapter, the title was incomplete. This has been corrected.

References

  1. Albelwi, S.: Survey on self-supervised learning: auxiliary pretext tasks and contrastive learning methods in imaging. Entropy 24(4) (2022). https://doi.org/10.3390/e24040551, https://www.mdpi.com/1099-4300/24/4/551

  2. Chamard, C., et al.: Ten-year incidence and assessment of safe screening intervals for diabetic retinopathy: the OPHDIAT study. Br. J. Ophthalmol. 105(3), 432–439 (2020). https://doi.org/10.1136/bjophthalmol-2020-316030

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020). https://doi.org/10.48550/ARXIV.2002.05709, https://arxiv.org/abs/2002.05709

  4. Gayathri, S., Gopi, V.P., Palanisamy, P.: A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed. Signal Process. Control 62, 102115 (2020)

    Article  Google Scholar 

  5. Huang, Y., Lin, L., Cheng, P., Lyu, J., Tang, X.: Lesion-based contrastive learning for diabetic retinopathy grading from fundus images (2021). https://doi.org/10.48550/ARXIV.2107.08274, https://arxiv.org/abs/2107.08274

  6. Liu, X., et al.: Self-supervised learning: generative or contrastive. arXiv preprint arXiv:2006.08218 vol. 1, no. 2 (2020)

  7. Massin, P., et al.: Ophdiat: a telemedical network screening system for diabetic retinopathy in the Île-de-france. Diab. Metab. 34, 227–34 (2008). https://doi.org/10.1016/j.diabet.2007.12.006

  8. Ogurtsova, K., et al.: IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diab. Res. Clin. Pract. 128, 40–50 (2017)

    Article  Google Scholar 

  9. Ouyang, J., et al.: Self-supervised longitudinal neighbourhood embedding. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 80–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_8

    Chapter  Google Scholar 

  10. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016). https://doi.org/10.1016/j.procs.2016.07.014, https://www.sciencedirect.com/science/article/pii/S1877050916311929, 20th Conference on Medical Image Understanding and Analysis (MIUA 2016)

  11. Quellec, G., Charrière, K., Boudi, Y., Cochener, B., Lamard, M.: Deep image mining for diabetic retinopathy screening. Med. Image Anal.39, 178–193 (2017). https://doi.org/10.1016/j.media.2017.04.012, https://www.sciencedirect.com/science/article/pii/S136184151730066X

  12. Rivail, A., et al.: Modeling disease progression in retinal OCTs with longitudinal self-supervised learning. In: Rekik, I., Adeli, E., Park, S.H. (eds.) PRIME 2019. LNCS, vol. 11843, pp. 44–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32281-6_5

    Chapter  Google Scholar 

  13. Robin, X., et al.: pROC: an open-source package for r and s to analyze and compare ROC curves. BMC Bioinf. 12(1) (2011). https://doi.org/10.1186/1471-2105-12-77

  14. Saeedi, P., et al.: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edn. Diab. Res. Clin. Pract. 157, 107843 (2019). https://doi.org/10.1016/j.diabres.2019.107843

  15. Saha, S.K., Xiao, D., Bhuiyan, A., Wong, T.Y., Kanagasingam, Y.: Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: a review. Biomed. Sig. Process. Control 47, 288–302 (2019). https://doi.org/10.1016/j.bspc.2018.08.034

  16. Vernhet, P., Durrleman, S.: Longitudinal self-supervision to disentangle inter-patient variability, pp. 231–241 (2021). https://doi.org/10.1007/978-3-030-87196-3

  17. Yan, Y., et al.: Longitudinal detection of diabetic retinopathy early severity grade changes using deep learning. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2021. LNCS, vol. 12970, pp. 11–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87000-3_2

    Chapter  Google Scholar 

  18. Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: Longitudinal self-supervised learning. Med. Image Anal. 71 (2021). https://doi.org/10.1016/j.media.2021.102051

Download references

Acknowledgements

The work takes place in the framework of the ANR RHU project Evired. This work benefits from State aid managed by the French National Research Agency under “Investissement d’Avenir” program bearing the reference ANR-18-RHUS-0008

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Zeghlache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeghlache, R. et al. (2022). Detection of Diabetic Retinopathy Using Longitudinal Self-supervised Learning. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics