Abstract
The basic principles and techniques used in Electrooculography (EOG) are presented. The main objective of this work is to present a state of art of Electrooculography (EOG) in Human computer Interface (HCI) to help researchers interested in the field.
This research was funded by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/\(_{-}\)Proyecto PGC2018-095709-B-C21 (AEI, FEDER, UE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Gawad, A.A., Ahmed, S.A., Abd El-Samie, F.E., Ayman, M.B.: Wireless Personal Communications Efficient Classification of Horizontal and Vertical EOG Signals for Human Computer Interaction (2021, under review). https://doi.org/10.21203/rs.3.rs-471385/v1
Agustin, J.S., Mateo, J.C., Hansen, J.P., Villanueva, A.: Evaluation of the potential of gaze input for game interaction. PsychNol. J. 7, 213–236 (2009)
Barea, R., Boquete, L., López, E., Mazo, M.: Guidance of a wheelchair using electrooculography. In: Proceedings of the 3rd IMACS International Multiconference Circuits, Systems, Communications and Computers, Athens, Greece, 4–8 July 1999, pp. 2421–2426 (1999)
Barea, R., Boquete, L., Mazo, M., López, E.: Wheelchair guidance strategies using EOG. J. Intell. Robot. Syst. Theory Appl. 34, 279–299 (2002). https://doi.org/10.1023/A:1016359503796
Barea, R., Boquete, L., Ortega, S., López, E., Rodríguez-Ascariz, J.M.: EOG-based eye movements codification for human computer interaction. Expert Syst. Appl. 39, 2677–2683 (2009). https://doi.org/10.1016/j.eswa.2011.08.123
Beukelman, D., Fager, S., Nordness, A.: Communication support for people with ALS. Neurol. Res. Int. 2011, 714693 (2011)
Borghetti, D., Bruni, A., Fabbrini, M., Murri, L., Sartucci, F.: A low-cost interface for control of computer functions by means of eye movements. Comput. Biol. Med. 37, 1765–1770 (2007)
Bott, N.T., Lange, A., Rentz, D., Buffalo, E., Clopton, P., Zola, S.: Web camera based eye tracking to assess visual memory on a visual paired comparison task. Front. Neurosci. 11, 370 (2017). https://doi.org/10.3389/fnins.2017.00370
Brown, M., Marmor, M., Vaegan, Zrenner, E., Brigell, M., Bach, M.: ISCEV standard for clinical electro-oculography (EOG) 2006. Doc. Ophthalmol. 113, 205–212 (2006). https://doi.org/10.1007/s10633-006-9030-0
Bulling, A., Roggen, D., Tröster, G.: Wearable EOG goggles: seamless sensing and context-awareness in everyday environments. J. Ambient Intell. Smart Environ. 1, 157–171 (2009). https://doi.org/10.3233/AIS-2009-0020
Bulling, A., Member, S., Ward, J.A., Gellersen, H., Tröster, G.: Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Pattern Anal. Mach. Intell. 33, 741–753 (2011). https://doi.org/10.1109/TPAMI.2010.86
Chang, W.-D., Cha, H.-S., Kim, D.Y., Kim, S.H., Im, C.-H.: Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis. J. Neuroeng. Rehabil. 14, 89 (2017)
Chang, W.D.: Electrooculograms for human-computer interaction: a review. Sensors 19, 2690 (2019). https://doi.org/10.3390/s19122690
Christensena, J.A.E., et al.: Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson’s and Parkinson’s disease. J. Neurosci. Methods 235, 262–276 (2014)
Choudhari, A., Porwal, P., Meriaudeau, F.: An electrooculography based human machine interface for wheelchair control. Biocybern. Biomed. Eng. 39(3), 673–685 (2019). https://doi.org/10.1016/j.bbe.2019.04.002
Deng, L.Y., Hsu, C.L., Lin, T.C., Tuan, J.S., Chang, S.M.: EOG-based human-computer interface system development. Expert Syst. Appl. 37(4), 3337–3343 (2010). https://doi.org/10.1016/j.eswa.2009.10.017
Djanian, S.: Eye movement classification using deep learning. Master thesis, Aalborg University (2019)
Dorr, M., Bohme, M., Martinetz, T., Brath, E.: Gaze beats mouse: a case study. PsychNol. J. 7, 16–19 (2007)
Economu, S.G., Stefanis, C.N.: Electrooculographic (EOG) findings in manic-depressive illness. Acta Psychiatr. Scand. 60(2), 155–162 (1979). https://doi.org/10.1111/j.1600-0447.1979.tb03583.x
Estrany, B., Fuster-Parra, P., Garcia, A., Luo, Y.: Human computer interface by EOG tracking. In: International Conference on Proceedings of the 1st ACM International Conference on PErvasive Technologies Related to Assistive Environments, Athens, Greece, pp. 1–9. ACM (2008). https://doi.org/10.1049/cp:20081109
Estrany, B., Fuster-Parra, P., Garcia, A., Luo, Y.: Accurate interaction with computer by eye movement tracking. In: 2008 IET 4th International Conference on Intelligent Environments (IE08), pp. 1–7 (2008). https://doi.org/10.1145/1389586.1389694
Estrany, B., Fuster-Parra, P., Garcia, A., Luo, Y.: EOG signal processing and analysis for controlling computer by eye movements. In: International Conference on Proceedings of the 2nd ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, pp. 9–13. ACM (2009). https://doi.org/10.1145/1579114.1579132
Fang, F., Shinozaki, T.: Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems. PLoS ONE 13, e0192684 (2018)
Fountoulakis, K.N., Fotiou, F., Lacovides, A., Kaprinis, G.: Is there a dysfunction in the visual system of depressed patients? Ann. Gen. Psychiatry 4(7), 1–10 (2005)
Haslwanter, T., Clarke, A.H.: Eye movement measurement. Electro-oculography and video-oculography [Internet] 1st ed. Handbook of Clinical Neurophysiology. Elsevier B.V. (2010). https://doi.org/10.1016/S1567-4231(10)09005-2
Hjorth, B., Elema-Schönander, A.B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29, 306–310 (1970). https://doi.org/10.1016/0013-4694(70)90143-4
Hládek, L., Porr, B., Brimijoin, W.O.: Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography. PLoS ONE 13(1), e0190420 (2018). https://doi.org/10.1371/journal.pone.0190420
Lam, R.W., Beattie, C.W., Buchanan, A., Remick, R.A., Zis, A.P.: Low electrooculographic ratios in patient with seasonal affective disorder. Am. J. Psychiatry 148(11), 1526–1529 (1991). https://doi.org/10.1176/ajp.148.11.1526
Iáñez, E., Azorin, J.M., Perez-Vidal, C.: Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface. PLoS ONE 8, 1–10 (2013). https://doi.org/10.1371/journal.pone.0067099. PMID: 23843986
Itsuki, N., et al.: Improved method for measuring electrooculogram and its evaluation. In: Proceedings of IEEE Conference on Control, Automation, Robotics and Vision, pp. 947–952 (2004)
Kim, M.R., Yoon, G.: Control signal from EOG analysis and its application. Int. J. Electr. Comput. Electron. Commun. Eng. 7, 864–867 (2013)
Kumar, D., Poole, E.: Classification of EOG for human computer interface. In: Proceedings IEEE Conference on Engineering in Medicine and Biology Society, pp. 64–67 (2002)
Lee, K.-R., Chang, W.-D., Kim, S., Im, C.-H.: Real-time ‘eye-writing’ recognition using electrooculogram (EOG). IEEE Trans. Neural Syst. Rehabil. Eng. 25, 37–48 (2016)
Hládek, L., Porr, B., Brimijoin, W.O.: Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography. PLoS ONE 13(1), e0190420 (2018). https://doi.org/10.1371/journal.pone.0190420
Manabe, H., Fukumoto, M., Yagi, T.: Direct gaze estimation based on nonlinearity of EOG. IEEE Trans. Biomed. Eng. 62(6), 1553–1562 (2015). https://doi.org/10.1109/TBME.2015.2394409
McPartland, R.J., Kupfer, D.J.: Computerised measures of electro-oculographic activity during sleep. Int. J. Biomed. Comput. 9, 409–419 (1978). https://doi.org/10.1016/0020-7101(78)90048-X
Mowrer, O.H., Ruch, R.C., Miller, N.E.: The corneoretinal potencial difference as the basis of the galvanometric method of recording eye movements. Am. J. Physiol. 114, 423 (1936)
Muensterer, O.J., Lacher, M., Zoeller, C., Bronstein, M., Kübler, J.: Google Glass in pediatric surgery: an exploratory study. Int. J. Surg. 12, 281–289 (2014)
Nilsson, S., Gustafsson, T., Carleberg, P.: Hands free interaction with virtual information in a real environment. PsychNol. J. 7, 175–196 (2007)
Oh, S., Kumar, P.S., Kwon, H., Varadan, V.K.: Wireless brain-machine interface using EEG and EOG: brain wave classification. In: Proceedings of the Nanosensors, Biosensors, and Info-Tech Sensors and Systems, San Diego, CA, USA, 11–15 March 2012 (2012)
Perez Reynoso, F.D., et al.: A custom EOG-based HMI using neural network modeling to real-time for the trajectory tracking of a manipulator robot. Front. Neurorobot. 14, 1–23 (2020). Article 578834. https://doi.org/10.3389/fnbot.2020.578834
Pettersson, K., Jagadeesan, S., Lukander, K., Henelius, A., Haeggström, E., Müller, K., et al.: Algorithm for automatic analysis of electro-oculographic data. Biomed. Eng. Online 12 (2013). https://doi.org/10.1186/1475-925X-12-110
Ramli, R., Arof, H., Ibrahim, F., Mokhtar, N., Idris, M.Y.I.: Using finite state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigation. Expert Syst. Appl. 42, 2451–2463 (2015). https://doi.org/10.1016/j.eswa.2014.10.052
Rusydi, M., Sasaki, M., Ito, S.: Affine transform to reform pixel coordinates of EOG signals for controlling robot manipulators using gaze motions. Sensors 14, 10107–10123 (2014)
Ryu, J., Lee, M., Kim, D.H.: EOG-based eye tracking protocol using baseline drift removal algorithm for long-term eye movement detection. Expert Syst. Appl. 131, 275–287 (2019). https://doi.org/10.1016/j.eswa.2019.04.039
Schott, E.: Über die Registrierung des Nystagmus und anderer Augenbewegungen vermittels des Seitengalvenometers. Deutches Archiv für Klinishe Medizin 140, 79–90 (1922)
Simini, F., Touya, A., Senatore, A., Pereira, J.: Gaze tracker by electrooculography (EOG) on a head-band. In: 2011 10th International Workshop on Biomedical Engineering, pp. 1–4 (2011). https://doi.org/10.1109/IWBE.2011.6079050
Singh, H., Singh, J.: Human eye tracking and related issues: a review. Int. J. Sci. Res. 2(9), 1–10 (2012)
Tamura, H., Yan, M., Sakurai, K., Tanno, K.: EOG-sEMG human interface for communication. Comput. Intell. Neurosci. 2016, 1–11 (2016). Article ID 7354082. https://doi.org/10.1155/2016/7354082
Toivanen, M., Pettersson, K., Lukander, K.: A probabilistic real-time algorithm for detecting blinks, saccades, and fixations from EOG data. J. Eye Mov. Res. 8, 1–14 (2015). https://doi.org/10.16910/jemr.8.2.1
Tsai, J.-Z., Lee, C.-K., Wu, C.-M., Wu, J.-J., Kao, K.-P.: A feasibility study of an eye-writing system based on electro-oculography. J. Med. Biol. Eng. 28, 39–46 (2008)
Xiao, J., Qu, J., Li, Y.: An electrooculogram-based interaction method and its music-on-demand application in a virtual reality environment. IEEE Access 7, 22059–2207 (2019)
Xu, J., et al.: Electrooculography and tactile perception collaborative interface for 3D human-machine interaction. ACS Nano 16, 6687–6699 (2022). https://doi.org/10.1021/acsnano.2c01310
Yamagishi, K., Hori, J., Miyakawa, M.: Development of EOG-based communication system controlled by eight-directional eye movements. In: Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006, pp. 2574–2577 (2006)
Yan, M., Go, S., Tamura, H.: Communication system using EOG for persons with disabilities and its judgment by EEG. Artif. Life Robot. 19, 89–94 (2014)
Young, L.R., Sheena, D.: Eye-movement measurement techniques. Am. Psychol. 30, 315–330 (1975)
Yu, J.H., Lee, B.H., Kim, D.H.: EOG based eye movement measure of visual fatigue caused by 2D and 3D displays. In: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, pp. 305–308 (2012). https://doi.org/10.1109/BHI.2012.6211573
Zhang, J., Wang, B., Zhang, C., Xiao, Y., Wang, M.Y.: An EEG/EMG/EOG-based multimodal human-machine interface to real-time control of a soft robot hand. Front. Neurorobot. 13(7), 1–13 (2019)
Zoccolan, D., Graham, B., Cox, D.: A self-calibrating, camera-based eye tracker for the recording of rodent eye movements. Front. Neurosci. 4, 193 (2010). https://doi.org/10.3389/fnins.2010.00193
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Estrany, B., Fuster-Parra, P. (2022). Human Eye Tracking Through Electro-Oculography (EOG): A Review. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2022. Lecture Notes in Computer Science, vol 13492. Springer, Cham. https://doi.org/10.1007/978-3-031-16538-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-16538-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16537-5
Online ISBN: 978-3-031-16538-2
eBook Packages: Computer ScienceComputer Science (R0)