Skip to main content

Towards Automation of Pollen Monitoring: Image-Based Tree Pollen Recognition

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2022)

Abstract

Pollen monitoring helps predict the risk of pollen-induced allergies. Traditionally, this monitoring is performed based on the biological material obtained from volumetric Hirst’s traps. A palynological specialist analyzes the obtained microbiological specimen under the microscope, and recognizes and counts pollen grains of various taxa. This is a tedious task, and automatic detection and counting of pollen grains in digital microscopic images can support specialists in their work. YOLOv5 and Faster R-CNN are the state-of-art deep neural networks used for object detection in many fields of computer vision. In the presented research, these detectors were applied to analyze specimen with pollen grains of four taxa, typical of early spring in Central and Eastern Europe. The obtained results enabled the selection of the detector that should be the first choice in pollen grains recognition tasks. Statistical analysis of differences in the distribution of the recognition quality measures also supports the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Academy of Allergy & Clinical Immunology: Worldwide Map of Pollen Monitoring Stations. https://www.eaaci.org/19-activities/task-forces/4342-pollen-monitoring-stations-of-the-world.html Last accessed 14 Jun 2022

  2. Pawankar, R., Canonica, G.W., Holgate, S.T., Lockey, R.F.: World Allergy Organization (WAO) White Book on Allergy, vol. 3, pp. 156–157. WAO, Milwaukee (2011)

    Google Scholar 

  3. Buters, J., Antunes, C., Galveias, A., Bergmann, K.C., Thibaudon, M., Galán, C., Schmidt-Weber, C., Oteros, J.: Pollen and spore monitoring in the world. Clin. Transl. Allergy 8, 9 (2018). https://doi.org/10.1186/s13601-018-0197-8

    Article  Google Scholar 

  4. Hirst, J.M.: An automatic volumetric spore trap. Ann. Appl. Biol. 39, 257–265 (1952)

    Article  Google Scholar 

  5. Mandrioli, P., Comtois, P., Levizzani, V.: Methods in Aerobiology. Pitagora Editrice, Bologna, Italy (1998)

    Google Scholar 

  6. Galán, C., Cariñanos, P., Alcázar, P., Dominguez-Vilches, E.: Spanish Aerobiology Network (REA) Management and Quality Manual. Servicio de Publicaciones, Universidad de Córdoba, Córdoba, Spain (2007)

    Google Scholar 

  7. Piotrowska, K., Kubik-Komar, A.: The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Aerobiologia 28, 467–479 (2012)

    Article  Google Scholar 

  8. Dunker, S., et al.: Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist 229(1), 593–606 (2021)

    Article  Google Scholar 

  9. Bell, K.L., Burgess, K.S., Botsch, J.C., Dobbs, E.K., Read, T.D., Brosi, B.J.: Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol. Ecol. 28, 431–455 (2019)

    Article  Google Scholar 

  10. Martin, A.C., Harvey, W.J.: The global pollen project: a new tool for pollen identification and the dissemination of physical reference collections. Methods Ecol. Evol. 8(7), 892–897 (2017). https://doi.org/10.1111/2041-210X.12752

    Article  Google Scholar 

  11. Ascari, L., Novara, C., Dusio, V., Oddi, L., Siniscalco, C.: Quantitative methods in microscopy to assess pollen viability in different plant taxa. Plant Reprod. 33, 205–219 (2020)

    Article  Google Scholar 

  12. Plaza, M., Kolek, F., Leier-Wirtz, V., Brunner, J., Traidl-Hoffmann, C., Damialis, A.: Detecting airborne pollen using an automatic, real-time monitoring system: evidence from two sites. Int. J. Environ. Res. Public. Health 19(4), 2471 (2022). https://doi.org/10.3390/ijerph19042471

    Article  Google Scholar 

  13. Li, P., Flenley, J.R.: Pollen texture identification using neural networks. Grana 38, 59–64 (1999)

    Article  Google Scholar 

  14. France, I., Duller, A.W.G., Duller, G.A.T., Lamb, H.F.: A new approach to automated pollen analysis. Quat. Sci. Rev. 19, 537–546 (2000)

    Article  Google Scholar 

  15. Tello-Mijares, S., Flores, F.: A novel method for the separation of overlapping pollen species for automated detection and classification. Comput. Math. Methods Med. 2016, 5689346 (2016)

    Article  Google Scholar 

  16. Battiato, S., Ortis, A., Trenta, F., Ascari, L., Politi, M., Siniscalco, C.: Pollen13K: a large scale microscope pollen grain image dataset. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2456–2460. IEEE (2020)

    Google Scholar 

  17. Sevillano, V., Aznarte, J.L.: Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. PLoS ONE 13(9), e0201807 (2018)

    Article  Google Scholar 

  18. Sevillano, V., Holt, K., Aznarte, J.L.: Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS ONE 15, e0229751 (2020)

    Article  Google Scholar 

  19. Astolfi, G., et al.: POLLEN73S: an image dataset for pollen grains classification. Ecol. Inf. 60, 101165 (2020)

    Article  Google Scholar 

  20. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), DeepVision Workshop (2014)

    Google Scholar 

  21. Waithe, D., Brown, J.M., Reglinski, K., Diez-Sevilla, I., Roberts, D., Eggeling, C.: Object detection networks and augmented reality for cellular detection in fluorescence microscopy. J. Cell Biol. 219(10), e201903166 (2020)

    Article  Google Scholar 

  22. Casado-García, A., et al.: LabelStoma: a tool for stomata detection based on the YOLO algorithm. Comput. Electron. Agric. 178, 105751 (2020)

    Article  Google Scholar 

  23. Abas, S.M., Abdulazeez, A.M., Zeebaree, D.Q.: A YOLO and convolutional neural network for the detection and classification of leukocytes in leukemia. Indones. J. Electr. Eng. Comput. Sci. 25, 200–213 (2022)

    Google Scholar 

  24. Cao, N., Meyer, M., Thiele, L., Saukh, O.: Automated pollen detection with an affordable technology. In: Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks EWSN 2020, pp. 108–119 (2020)

    Google Scholar 

  25. Puc, M.: Characterisation of pollen allergens. Ann. Agric. Environ. Med. 10, 143–149 (2003)

    Google Scholar 

  26. Vik, H., Florvaag, E., Elsayed, S.: Allergenic significance of Betula (birch) pollen. In: D’Amato, G., Spieksma, F.T.M., Bonini, S. (eds.) Allergenic Pollen and Pollinosis in Europe, pp. 94–98. Blackwell Scientific Publications, London (1991)

    Google Scholar 

  27. Zając, A., Zając, M.: Atlas rozmieszczenia roślin naczyniowych w Polsce (Distribution atlas of vascular plants in Poland). Jagiellonian University, Poland (2001)

    Google Scholar 

  28. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  29. YOLOv5 Documentation. https://docs.ultralytics.com/ Accessed 14 Jun 2022

  30. COCO - Common Objects in Context. https://cocodataset.org/ Accessed 14 Jun 2022

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., et al. (eds.) Proceedings of the Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  32. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). www.github.com/facebookresearch/detectron2 Accessed 14 Jun 2022

  33. Kubera, E., Kubik-Komar, A., Kurasiński, P., Piotrowska-Weryszko, K., Skrzypiec, M.: Detection and recognition of pollen grains in multilabel microscopic images. Sensors 22(7), 2690 (2022). https://doi.org/10.3390/s22072690

    Article  Google Scholar 

  34. Conover, W.J.: Practical Nonparametric Statistics. Wiley, New York (1999)

    Google Scholar 

  35. StatSoft Inc., “Statistica” Data Analysis Software System, version 10 (2011)

    Google Scholar 

  36. Pohlert, T.: The pairwise multiple comparison of mean ranks package (PMCMR). R Package (2014)

    Google Scholar 

  37. Pohlert, T.: PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R Package (2018)

    Google Scholar 

  38. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elżbieta Kubera , Agnieszka Kubik-Komar , Alicja Wieczorkowska , Krystyna Piotrowska-Weryszko , Paweł Kurasiński or Agata Konarska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kubera, E., Kubik-Komar, A., Wieczorkowska, A., Piotrowska-Weryszko, K., Kurasiński, P., Konarska, A. (2022). Towards Automation of Pollen Monitoring: Image-Based Tree Pollen Recognition. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science(), vol 13515. Springer, Cham. https://doi.org/10.1007/978-3-031-16564-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16564-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16563-4

  • Online ISBN: 978-3-031-16564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics