Skip to main content

Rough Sets for Intelligence on Embedded Systems

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13515))

Included in the following conference series:

  • 778 Accesses

Abstract

In the continuing effort to run artificial intelligence (AI) on resource-constrained embedded devices, we present experiments that test the viability of enabling an embedded system to run Rough Set Theory. We first show that the Fuzzy-Rough Nearest Neighbor (FRNN) algorithm, a classic Rough Sets methodology, can indeed be effectively run on an embedded device. Next we compare 10 iterations of four algorithms in terms of power consumption, speed, accuracy, and model size. Specifically, we analyze on an embedded system, KNN, Fuzzy-Rough Nearest Neighbour (FRNN) without weights, FRNN with weights and Fuzzy Rough One-Versus-One (FROVOCO). Herein, we present a step towards the goal of designing an AI microprocessor, without software, based entirely on Rough Sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Association for Computing Machinery. https://www.acm.org/

  2. Innovation through Collaboration: Building Research Communities. https://intel.ly/3Mz7pS9

  3. Ajani, T.S., Imoize, A.L., Atayero, A.A.: An overview of machine learning within embedded and mobile devices-optimizations and applications. Sensors (Basel) 21(13), 4412 (2021). https://doi.org/10.3390/s21134412

    Article  Google Scholar 

  4. Alippi, C., Disabato, S., Roveri, M.: Moving convolutional neural networks to embedded systems: the AlexNet and VGG-16 case. In: 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 212–223. IEEE (2018)

    Google Scholar 

  5. Asan, O., Bayrak, A.E., Choudhury, A., et al.: AI and human trust in healthcare: focus on clinicians. J. Med. Internet Res. 22(6), e15154 (2020)

    Article  Google Scholar 

  6. Assayad, I., Girault, A., Kalla, H.: Tradeoff exploration between reliability, power consumption, and execution time for embedded systems: the TSH tricriteria scheduling heuristic. Int. J. Softw. Tools Technol. Transfer 15(3), 229–245 (2013). https://doi.org/10.1007/s10009-012-0263-9

    Article  Google Scholar 

  7. Boulanin, V.: The impact of artificial intelligence on strategic stability and nuclear risk: euro-atlantic perspectives (2019)

    Google Scholar 

  8. Clark, C.: Air combat commander doesn’t trust project maven’s AI yet. AIR WARFARE, NETWORKS / CYBER (2019). https://bit.ly/3MD5A6O

  9. Cornelis, C., Jensen, R.: A noise-tolerant approach to fuzzy-rough feature selection. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1598–1605. IEEE (2008)

    Google Scholar 

  10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  11. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586 (2011)

    Google Scholar 

  12. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990)

    Article  Google Scholar 

  13. García-Pedrajas, N., Ortiz-Boyer, D.: Boosting knn classifier by means of input space projection. Expert Syst. Appl. 36(7), 10570–10582 (2009)

    Article  Google Scholar 

  14. Gil, Y., Selman, B.: A 20-year community roadmap for artificial intelligence research in the us. arXiv preprint arXiv:1908.02624 (2019)

  15. Gupta, C., et al.: Protonn: compressed and accurate knn for resource-scarce devices. In: International Conference on ML, pp. 1331–1340. PMLR (2017)

    Google Scholar 

  16. Haigh, K.Z., Mackay, A.M., Cook, M.R., Lin, L.G.: Machine Learning for Embedded Systems: A Case Study. BBN Technologies, Cambridge, MA, USA (2015)

    Google Scholar 

  17. Hayyolalam, V., Aloqaily, M., Özkasap, Ö., Guizani, M.: Edge intelligence for empowering IoT-based healthcare systems. IEEE Wirel. Comm. 28(3), 6–14 (2021)

    Article  Google Scholar 

  18. He, R., Xu, C., Li, D., Hou, W., Yu, X., Zhang, H.: A fuzzy-rough-based approach for uncertainty classification on hybrid info sys. In: 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), pp. 791–796. IEEE (2018)

    Google Scholar 

  19. Heaven, D., et al.: Why deep-learning AIs are so easy to fool. Nature 574(7777), 163–166 (2019)

    Article  Google Scholar 

  20. Hooker, S.: The hardware lottery. Comm. ACM 64(12), 58–65 (2021)

    Article  Google Scholar 

  21. Hussein, A.S., Khairy, R.S., Najeeb, S.M.M., Alrikabi, H.T., et al.: Credit card fraud detection using FRNN and sequential minimal optimization with logistic regression. Int. J Interact. Mob. Technol. 15(5), 24–42 (2021)

    Article  Google Scholar 

  22. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification and prediction. Theo. Comput. Sci. 412(42), 5871–5884 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kang, S.: Knn learning with graph neural networks. Mathematics 9(8), 830 (2021)

    Article  Google Scholar 

  24. Kataria, A., Singh, M.: A review of data classification using KNN algorithm. Int. J. Emerg. Technol. Adv. Eng. 3(6), 354–360 (2013)

    Google Scholar 

  25. Kumar, A., Prasad, P.S.: Scalable fuzzy rough set reduct computation using fuzzy min-max neural network preprocessing. IEEE Trans. Fuzzy Syst. 28(5), 953–964 (2020)

    Article  Google Scholar 

  26. Lenz, O.U., Peralta, D., Cornelis, C.: fuzzy-rough-learn 0.1: a Python library for machine learning with fuzzy rough sets. In: Bello, R., Miao, D., Falcon, R., Nakata, M., Rosete, A., Ciucci, D. (eds.) IJCRS 2020. LNCS (LNAI), vol. 12179, pp. 491–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52705-1_36

    Chapter  Google Scholar 

  27. Merenda, M., Porcaro, C., Iero, D.: Edge machine learning for AI-enabled IoT devices: a review. Sensors 20(9), 2533 (2020)

    Article  Google Scholar 

  28. Nadeski, M.: Bringing ML to embedded systems. TX Instruments (2019)

    Google Scholar 

  29. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  30. Nordby, J.: Machine learning on embedded devices (2020). http://bit.ly/2NmYgDA Accessed 15 Feb 2021

  31. Osman, H.E.: On-chip object recognition system using random forests. In: 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, pp. 77–82 (2008)

    Google Scholar 

  32. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  33. de Prado, M., Pazos, N., Benini, L.: Learning to infer: Rl-based search for dnn primitive selection on heterogeneous embedded systems. In: 2019 Design, Automation & Test in Europe Conference & Exhibition, pp. 1409–1414. IEEE (2019)

    Google Scholar 

  34. Prasatha, V., et al.: Effects of distance measure choice on KNN classifier performance-a review, p. 56. arXiv preprint arXiv:1708.04321 (2017)

  35. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  36. Shadrin, D., Menshchikov, A., Ermilov, D., Somov, A.: Designing future precision agriculture: detection of seeds germination using artificial intelligence on a low-power embedded system. IEEE Sens. J. 19(23), 11573–11582 (2019)

    Article  Google Scholar 

  37. Silverman, B.W., Jones, M.C.: E. fix and J.L Hodges (1951): an important contribution to nonparametric discriminant analysis and density estimation: commentary on fix and Hodges. In: International Statistical Review/Revue Internationale de Statistique, pp. 233–238 (1989)

    Google Scholar 

  38. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural nets. arXiv arXiv:1312.6199 (2013)

  39. Taylor, B., Marco, V.S., Wolff, W., Elkhatib, Y., Wang, Z.: Adaptive deep learning model selection on embedded systems. ACM SIGPLAN Not. 53(6), 31–43 (2018). https://doi.org/10.1145/3299710.3211336

    Article  Google Scholar 

  40. Velasco-Montero, D., Fernández-Berni, J., Carmona-Galán, R., Rodríguez-Vázquez, Á.: Optimum selection of DNN model and framework for edge inference. IEEE Access 6, 51680–51692 (2018)

    Article  Google Scholar 

  41. Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C., Herrera, F.: Dynamic affinity-based classification of multi-class imbalanced data with ovo decomposition: a fuzzy rough set approach. Knowl. Inf. Sys. 56(1), 55–84 (2018)

    Article  Google Scholar 

  42. Warden, P., Situnayake, D.: Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly Media (2019)

    Google Scholar 

  43. Yonekawa, H., Nakahara, H.: On-chip memory based binarized convolutional deep neural network applying batch normalization free technique on an FPGA. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 98–105 (2017). https://doi.org/10.1109/IPDPSW.2017.95, 00068

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katrina Nesterenko or Rory Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesterenko, K., Lewis, R. (2022). Rough Sets for Intelligence on Embedded Systems. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science(), vol 13515. Springer, Cham. https://doi.org/10.1007/978-3-031-16564-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16564-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16563-4

  • Online ISBN: 978-3-031-16564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics