Skip to main content

Integrating Clustering Methodologies and Routing Optimization Algorithms for Last-Mile Parcel Delivery

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2022)

Abstract

This paper aims to design a two-echelon parcel distribution network modeled as the Two-Echelon Vehicle Routing Problem (2E-VRP). In this problem, e-cargo bikes perform the last-mile delivery. In fact, this transportation mode is positioned as a promising alternative to make last-mile delivery. Studies show cost and carbon dioxide equivalent (CO2e) emissions savings with cargo bikes setup compared to conventional vans. To solve this problem, a three-stage decomposition algorithm is proposed. In the first stage, the non-supervised machine learning clustering method 2D-k-means is considered to cluster the clients to the satellites. The second and third stages comprise the second and first echelon routing. The last two stages use a heuristic based on the Nearest Neighbor (NN) procedure. Two local search operators were used as improvement algorithms for the solution given by the NN in the second stage. There are scarce studies that use the 2D-k-means algorithm in this urban distribution network context. Experiments are run using a small instance based on real data from a delivery company in the city of Paris, France. Results show that the fixed costs and the cost of energy consumption of the e-cargo bikes are cheaper than the van used in the first echelon. Also, a reduction of 8.2% in terms of travel time is obtained when the Relocate local search is applied. Additional savings are achieved in performance indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bac, U., Erdem, M.: Optimization of electric vehicle recharge schedule and routing problem with time windows and partial recharge: a comparative study for an urban logistics fleet. Sustain Cities Soc. 70, 102883 (2021). https://doi.org/10.1016/j.scs.2021.102883

  2. Cortes, J.D., Suzuki, Y.: Last-mile delivery efficiency: en route transloading in the parcel delivery industry. Int. J. Prod. Res. 60, 2983–3000 (2021). https://doi.org/10.1080/00207543.2021.1907628

    Article  Google Scholar 

  3. Calvet, L., Alvarez-Palau, E.J., Viu, M., Castillo, C., Copado, P., Juan, A.A.: Promoting sustainable and intelligent freight transportation systems in the barcelona metropolitan area. Transp. Res. Proc. 58, 408–415 (2021)

    Google Scholar 

  4. Lindholm, M.: Urban freight transport from a local authority perspective-a literature review (2013)

    Google Scholar 

  5. Muñoz-Villamizar, A., Santos, J., Montoya-Torres, J.R., Velázquez-Martínez, J.C.: Measuring environmental performance of urban freight transport systems: a case study. Sustain. Cities Soc. 52, 101844 (2020). https://doi.org/10.1016/j.scs.2019.101844

    Article  Google Scholar 

  6. European Commission: White Paper on Transport-Roadmap to a Single European Transport Area - Towards a Competitive and Resource-Efficient Transport System (2011). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0144&from=EN

  7. Comi, A.: A modelling framework to forecast urban goods flows. Res. Transp. Econ. 80, 1–11 (2020). https://doi.org/10.1016/j.retrec.2020.100827

    Article  Google Scholar 

  8. Letnik, T., Marksel, M., Luppino, G., Bardi, A., Božičnik, S.: Review of policies and measures for sustainable and energy efficient urban transport. Energy 163, 245–257 (2018). https://doi.org/10.1016/j.energy.2018.08.096

    Article  Google Scholar 

  9. Zheng, C., Gu, Y., Shen, J., Du, M.: Urban logistics delivery route planning based on a single metro line. IEEE Access 9, 50819–50830 (2021). https://doi.org/10.1109/ACCESS.2021.3069415

    Article  Google Scholar 

  10. Azcuy, I., Agatz, N., Giesen, R.: Designing integrated urban delivery systems using public transport. Transp. Res. Part E: Logist. Transp. Rev. 156, 102525 (2021). https://doi.org/10.1016/j.tre.2021.102525

  11. Yuan, Y., Cattaruzza, D., Ogier, M., Semet, F., Vigo, D.: A column generation based heuristic for the generalized vehicle routing problem with time windows. Transp. Res. Part E: Logist. Transp. Rev. 152, 102391 (2021). https://doi.org/10.1016/j.tre.2021.102391

  12. Sonneberg, M.-O., Leyerer, M., Kleinschmidt, A., Knigge, F., Breitner, M.H.: Autonomous unmanned ground vehicles for urban logistics: optimization of last mile delivery operations. Presented at the (2019)

    Google Scholar 

  13. Li, J., Ensafian, H., Bell, M.G.H., Geers, D.G.: Deploying autonomous mobile lockers in a two-echelon parcel operation. Transp. Res. Part C: Emerg Technol. 128, 103155 (2021). https://doi.org/10.1016/j.trc.2021.103155

  14. Chen, C., Demir, E., Huang, Y.: An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots. Eur. J. Oper. Res. 294, 1164–1180 (2021). https://doi.org/10.1016/j.ejor.2021.02.027

    Article  Google Scholar 

  15. Juvvala, R., Sarmah, S.P.: Evaluation of policy options supporting electric vehicles in city logistics: a case study. Sustain. Cities Soc. 74, 103209 (2021). https://doi.org/10.1016/j.scs.2021.103209

    Article  Google Scholar 

  16. Settey, T., Gnap, J., Beňová, D., Pavličko, M., Blažeková, O.: The growth of e-commerce due to COVID-19 and the need for urban logistics centers using electric vehicles: Bratislava case study. Sustain. (Switz.) 13, 5357 (2021). https://doi.org/10.3390/su13105357

  17. Janjevic, M., Merchán, D., Winkenbach, M.: Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations. Eur. J. Oper. Res. 294, 1059–1077 (2021). https://doi.org/10.1016/j.ejor.2020.08.043

    Article  Google Scholar 

  18. Caggiani, L., Colovic, A., Prencipe, L.P., Ottomanelli, M.: A green logistics solution for last-mile deliveries considering e-vans and e-cargo bikes. Transp. Res. Proc. 52, 75–82 (2021)

    Google Scholar 

  19. Cempírek, V., Stopka, O., Meško, P., Dočkalíková, I., Tvrdoň, L.: Design of distribution centre location for small e-shop consignments using the Clark-Wright method. Transp. Res. Proc. 53, 224–233 (2021)

    Google Scholar 

  20. Crainic, T.G., Ricciardi, N., Storchi, G.: Advanced freight transportation systems for congested urban areas. Transp. Res. Part C: Emerg. Technol. 12, 119–137 (2004). https://doi.org/10.1016/j.trc.2004.07.002

    Article  Google Scholar 

  21. Kitjacharoenchai, P., Min, B.C., Lee, S.: Two echelon vehicle routing problem with drones in last mile delivery. Int. J. Prod. Econ. 225, 107598 (2020). https://doi.org/10.1016/j.ijpe.2019.107598

    Article  Google Scholar 

  22. Breunig, U., Schmid, V., Hartl, R.F., Vidal, T.: A large neighbourhood based heuristic for two-echelon routing problems. Comput. Oper. Res. 76, 208–225 (2016). https://doi.org/10.1016/j.cor.2016.06.014

    Article  Google Scholar 

  23. Hemmelmayr, V.C., Cordeau, J.F., Crainic, T.G.: An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39, 3215–3228 (2012). https://doi.org/10.1016/j.cor.2012.04.007

    Article  Google Scholar 

  24. Li, H., Wang, H., Chen, J., Bai, M.: Two-echelon vehicle routing problem with time windows and mobile satellites. Transp. Res. Part B: Methodol. 138, 179–201 (2020). https://doi.org/10.1016/j.trb.2020.05.010

    Article  Google Scholar 

  25. Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.M.: An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Eur. J. Oper. Res. 254, 80–91 (2016). https://doi.org/10.1016/j.ejor.2016.03.040

    Article  Google Scholar 

  26. Zeng, Z.Y., Xu, W.S., Xu, Z.Y., Shao, W.H.: A hybrid GRASP+VND heuristic for the two-echelon vehicle routing problem arising in city logistics. Math. Probl. Eng. 2014 (2014). https://doi.org/10.1155/2014/517467

  27. Yan, X., Huang, H., Hao, Z., Wang, J.: A graph-based fuzzy evolutionary algorithm for solving two-echelon vehicle routing problems. IEEE Trans. Evol. Comput. 1–14 (2019). https://doi.org/10.1109/TEVC.2019.2911736

  28. Eitzen, H., Lopez-Pires, F., Baran, B., Sandoya, F., Chicaiza, J.L.: A multi-objective two-echelon vehicle routing problem. An urban goods movement approach for smart city logistics. In: 2017 43rd Latin American Computer Conference, CLEI 2017, vol. 2017-Janua, pp. 1–10 (2017). https://doi.org/10.1109/CLEI.2017.8226454

  29. Wang, Z., Wen, P.: Optimization of a low-carbon two-echelon heterogeneous-fleet vehicle routing for cold chain logistics under mixed time window. Sustain. (Switz.) 12, 1–22 (2020). https://doi.org/10.3390/su12051967

    Article  Google Scholar 

  30. Belgin, O., Karaoglan, I., Altiparmak, F.: Two-echelon vehicle routing problem with simultaneous pickup and delivery: mathematical model and heuristic approach. Comput. Industr. Eng. 115, 1–16 (2018). https://doi.org/10.1016/j.cie.2017.10.032

    Article  Google Scholar 

  31. Li, H., Yuan, J., Lv, T., Chang, X.: The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems considering carbon dioxide emissions. Transp. Res. Part D: Transp. Environ. 49, 231–245 (2016). https://doi.org/10.1016/j.trd.2016.10.002

    Article  Google Scholar 

  32. Wang, Y., Zhang, S., Assogba, K., Fan, J., Xu, M., Wang, Y.: Economic and environmental evaluations in the two-echelon collaborative multiple centers vehicle routing optimization. J. Clean. Prod. 197, 443–461 (2018). https://doi.org/10.1016/j.jclepro.2018.06.208

    Article  Google Scholar 

  33. Wang, Y., et al.: Collaborative two-echelon multicenter vehicle routing optimization based on state–space–time network representation. J. Clean. Prod. 258, 120590 (2020). https://doi.org/10.1016/j.jclepro.2020.120590

    Article  Google Scholar 

  34. Wang, Y., Zhang, S., Guan, X., Fan, J., Wang, H., Liu, Y.: Cooperation and profit allocation for two-echelon logistics pickup and delivery problems with state–space–time networks. Appl. Soft Comput. 109, 107528 (2021). https://doi.org/10.1016/j.asoc.2021.107528

    Article  Google Scholar 

  35. Wang, Y., Li, Q., Guan, X., Xu, M., Liu, Y., Wang, H.: Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Syst. Appl. 167, 114201 (2021). https://doi.org/10.1016/j.eswa.2020.114201

    Article  Google Scholar 

  36. Luo, J., Chen, M.-R.: Multi-phase modified shuffled frog leaping algorithm with extremal optimization for the MDVRP and the MDVRPTW. Comput. Industr. Eng. 72, 84–97 (2014). https://doi.org/10.1016/j.cie.2014.03.004

    Article  Google Scholar 

  37. Du, L., He, R.: Combining nearest neighbor search with tabu search for large-scale vehicle routing problem. Phys. Proc. 25, 1536–1546 (2012). https://doi.org/10.1016/j.phpro.2012.03.273

    Article  Google Scholar 

  38. Flaberg, T., Hasle, G., Kloster, O., Riise, A.: Towards solving huge-scale vehicle routing problems for household type applications. In: Network Optimization Workshop. Saint-Remy de Provence (2006)

    Google Scholar 

  39. Ostertag, A., Doerner, K.F., Hartl, R.F., Taillard, E.D., Waelti, P.: POPMUSIC for a real-world large-scale vehicle routing problem with time windows. J. Oper. Res. Soc. 60, 934–943 (2009). https://doi.org/10.1057/palgrave.jors.2602633

    Article  Google Scholar 

  40. Ramirez-Villamil, A., Jaegler, A., Montoya-Torres, J.R.: Sustainable local pickup and delivery: the case of Paris. Res. Transp. Bus. Manag. (2021). https://doi.org/10.1016/j.rtbm.2021.100692

  41. Muñoz-Villamizar, A., Montoya-Torres, J.R., Vega-Mejía, C.A.: Non-collaborative versus collaborative last-mile delivery in urban systems with stochastic demands. Proc. CIRP 30, 263–268 (2015)

    Article  Google Scholar 

  42. Zhu, E., Zhang, Y., Wen, P., Liu, F.: Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index. Neurocomputing 363, 149–170 (2019). https://doi.org/10.1016/j.neucom.2019.07.048

    Article  Google Scholar 

  43. Cinar, D., Gakis, K., Pardalos, P.M.: A 2-phase constructive algorithm for cumulative vehicle routing problems with limited duration. Expert Syst. Appl. 56, 48–58 (2016). https://doi.org/10.1016/j.eswa.2016.02.046

    Article  Google Scholar 

  44. Ho, G.T.S., Ip, W.H., Lee, C.K.M., Mou, W.L.: Customer grouping for better resources allocation using GA based clustering technique. Expert Syst. Appl. 39, 1979–1987 (2012). https://doi.org/10.1016/j.eswa.2011.08.045

    Article  Google Scholar 

  45. Expósito-Izquierdo, C., Rossi, A., Sevaux, M.: A two-level solution approach to solve the clustered capacitated vehicle routing problem. Comput. Industr. Eng. 91, 274–289 (2016). https://doi.org/10.1016/j.cie.2015.11.022

    Article  Google Scholar 

  46. Defryn, C., Sörensen, K.: A fast two-level variable neighborhood search for the clustered vehicle routing problem. Comput. Oper. Res. 83, 78–94 (2017). https://doi.org/10.1016/j.cor.2017.02.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angie Ramírez-Villamil or Jairo R. Montoya-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez-Villamil, A., Montoya-Torres, J.R., Jaegler, A., Cuevas-Torres, J.M., Cortés-Murcia, D.L., Guerrero, W.J. (2022). Integrating Clustering Methodologies and Routing Optimization Algorithms for Last-Mile Parcel Delivery. In: de Armas, J., Ramalhinho, H., Voß, S. (eds) Computational Logistics. ICCL 2022. Lecture Notes in Computer Science, vol 13557. Springer, Cham. https://doi.org/10.1007/978-3-031-16579-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16579-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16578-8

  • Online ISBN: 978-3-031-16579-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics