Skip to main content

Heuristics for the Single-Item Dynamic Lot-Sizing Problem with Rework of Internal Returns

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13557))

Included in the following conference series:

Abstract

While external product returns from customers are well-studied in the dynamic lot-sizing literature, the same is not true for internal returns resulting from imperfect production. We approach this problem by considering a basic dynamic single-product lot-sizing model in which some of the items produced do not meet quality requirements and, therefore, must be reworked. The objective is to minimize the sum of setup and inventory costs for new production and rework while fully satisfying demand. To this end, three heuristics are developed, based essentially on two production policies that can efficiently coordinate new production and rework for different parameter constellations. This is confirmed by a computational study in which the developed heuristics yielded highly competitive results compared to those obtained with a commercial solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brahimi, N., Absi, N., Dauzèré-Pérès, S., Nordli, A.: Single-item dynamic lot-sizing problems: an updated survey. Eur. J. Oper. Res. 263(3), 838–863 (2017)

    Article  Google Scholar 

  • Devoto, C., Fernández, E., Piñeyro, P.: The economic lot-sizing problem with remanufacturing and inspection for grading heterogeneous returns. J. Remanufact. 11(1), 71–87 (2020). https://doi.org/10.1007/s13243-020-00089-5

    Article  Google Scholar 

  • Goerler, A., Voß, S.: Dynamic lot-sizing with rework of defective items and minimum lot-size constraints. Int. J. Prod. Res. 54(8), 1–14 (2016)

    Article  Google Scholar 

  • Goerler, A., Lalla-Ruiz, E., Voß, S.: Late acceptance hill-climbing matheuristic for the general lot sizing and scheduling problem with rich constraints. Algorithms 13, 1–26 (2020)

    Article  Google Scholar 

  • Golany, R., Yang, J., Yu, G.: Economic lot-sizing with remanufacturing options. IIE Trans. 33, 995–1003 (2001)

    Article  Google Scholar 

  • Helmrich, M.J.R., Jans, R., van den Heuvel, W., Wagelmans, A.P.: Economic lot-sizing with remanufacturing: complexity and efficient formulations. IIE Trans. 46, 67–86 (2014)

    Article  Google Scholar 

  • Kilic, O.A., van den Heuvel, W.: Economic lot sizing with remanufacturing: structural properties and polynomial-time heuristics. IISE Trans. 51(12), 1318–1331 (2019)

    Article  Google Scholar 

  • Li, X., Baki, F., Tian, P., Chaouch, B.A.: A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega 42, 75–87 (2014)

    Article  Google Scholar 

  • Pan, Z., Tang, J., Liu, O.: Capacitated dynamic lot sizing problems in closed-loop supply chain. Eur. J. Oper. Res. 198, 810–821 (2009)

    Article  Google Scholar 

  • Parsopoulos, K., Konstantaras, I., Skouri, K.: Metaheuristic optimization for the single-item dynamic lot sizing problem with returns and remanufacturing. Comput. Ind. Eng. 83, 307–315 (2015)

    Article  Google Scholar 

  • Piñeyro, P., Viera, O.: The economic lot-sizing problem with remanufacturing and heterogeneous returns: formulations, analysis and algorithms. Int. J. Prod. Res. (2021). https://doi.org/10.1080/00207543.2021.1925771

    Article  Google Scholar 

  • Rudert, S., Buscher, U.: On the complexity of the economic lot-sizing problem with rework of defectives. Dresdner Beiträge zur Betriebswirtschaftslehre, Nr. 182/22. TU Dresden, Dresden (2022). https://doi.org/10.25368/2022.322

  • Schulz, T.: A new silver-meal based heuristic for the single-item dynamic lot sizing problem with returns and remanufacturing. Int. J. Prod. Res. 49(9), 2519–2533 (2011)

    Article  Google Scholar 

  • Shaharudin, M.R., Govindan, K., Zailani, S., Tan, K.C.: Managing product returns to achieve supply chain sustainability: an exploratory study and research propositions. J. Cleaner Prod. 101(101), 1–15 (2015)

    Article  Google Scholar 

  • Sifaleras, A., Konstantaras, I., Mladenović, N.: Variable neighborhood search for the economic lot sizing problem with product returns and recovery. Int. J. Prod. Econ. 160, 133–143 (2015)

    Article  Google Scholar 

  • Teunter, R.H., Bayindir, Z.P., van den Heuvel, W.: Dynamic lot sizing with product returns and remanufacturing. Int. J. Prod. Res. 44(20), 4377–4400 (2006)

    Article  Google Scholar 

  • van Zyl, A., Adetunji, O.: A lot sizing model for two items with imperfect manufacturing process, time varying demand and return rates, dependent demand and different quality grades. J. Remanufact. 1–26 (2022). https://doi.org/10.1007/s13243-022-00110-z

  • Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manage. Sci. 5, 89–96 (1958)

    Article  Google Scholar 

  • Yano, C.A., Lee, H.L.: Lot sizing with random yields: a review. Oper. Res. 43(2), 311–334 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Rudert .

Editor information

Editors and Affiliations

Appendix

Appendix

The following MIP formulation has been used to calculate the optimal solutions using Gurobi as the commercial solver.

$$\begin{aligned}&\min \sum ^{T}_{t=1} h_s\cdot I_{s,t} + h_d \cdot I_{d,t} + y_t \cdot R_p + z_t \cdot R_r \ \end{aligned}$$
(11)
$$\begin{aligned} \mathrm {subject~to} \end{aligned}$$
$$\begin{aligned} I_{s,t}= & {} I_{s,t-1} + (1-\beta )\cdot p_t + r_t - d_t \quad \forall t=1,\ldots , T \end{aligned}$$
(12)
$$\begin{aligned} I_{d,t}= & {} I_{d,t-1} + \beta \cdot p_t - r_t \quad \forall t=1,\ldots , T \end{aligned}$$
(13)
$$\begin{aligned} p_t\le & {} d_{t,T} \cdot y_t \quad \forall t=1,\ldots , T \end{aligned}$$
(14)
$$\begin{aligned} r_t\le & {} d_{t,T} \cdot z_t \quad \forall t=1,\ldots , T \end{aligned}$$
(15)
$$\begin{aligned} I_{s,0}= & {} I_{d,0} = I_{d,T} = I_{s,T} = 0 \end{aligned}$$
(16)
$$\begin{aligned} p_t,r_t,I_{s,t},I_{d,t}\ge & {} 0, d_t > 0 \quad \forall t=1,\ldots , T \end{aligned}$$
(17)
$$\begin{aligned} y_t,z_t\in & {} \{0;1\} \quad \forall t=1,\ldots , T \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rudert, S., Buscher, U. (2022). Heuristics for the Single-Item Dynamic Lot-Sizing Problem with Rework of Internal Returns. In: de Armas, J., Ramalhinho, H., Voß, S. (eds) Computational Logistics. ICCL 2022. Lecture Notes in Computer Science, vol 13557. Springer, Cham. https://doi.org/10.1007/978-3-031-16579-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16579-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16578-8

  • Online ISBN: 978-3-031-16579-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics