Abstract
We place ourselves in the context of representing knowledge inside the cognitive model of a robot that needs to reason about its actions. We propose a new ontological transformation system able to model different levels of knowledge granularity. This model will allow to unfold the sequences of actions the robot performs for better scrutability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baddeley, A.: The concept of episodic memory. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 356(1413), 1345–1350 (2001)
Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search in belief space. In: Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems, pp. 52–61 (2000)
Bonet, B., Geffner, H.: Planning under partial observability by classical replanning: theory and experiments. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)
Botea, A., Enzenberger, M., Müller, M., Schaeffer, J.: Macro-FF: Improving AI planning with automatically learned macro-operators. J. Artif. Intell. Res. 24, 581–621 (2005)
Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief space search. J. Artif. Intell. Res. 26, 35–99 (2006)
Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning. In: IJCAI, pp. 6276–6282 (2019)
Cashmore, M., Collins, A., Krarup, B., Krivic, S., Magazzeni, D., Smith, D.: Towards explainable AI planning as a service. arXiv preprint arXiv:1908.05059 (2019)
Chakraborti, T., Sreedharan, S., Kambhampati, S.: The emerging landscape of explainable AI planning and decision making. arXiv preprint arXiv:2002.11697 (2020)
Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003)
Collins, A., Michalski, R.: The logic of plausible reasoning: a core theory. Cogn. Sci. 13(1), 1–49 (1989)
Croitoru, M., Compatangelo, E., Mellish, C.: Hierarchical knowledge integration using layered conceptual graphs. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS-ConceptStruct 2005. LNCS (LNAI), vol. 3596, pp. 267–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11524564_18
Das, D., Banerjee, S., Chernova, S.: Explainable AI for robot failures: generating explanations that improve user assistance in fault recovery. In: Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, pp. 351–360 (2021)
Erol, K., Hendler, J.A., Nau, D.S.: Semantics for hierarchical task-network planning. Maryland Univ College Park Inst for Systems Research, Technical Report (1995)
Fox, M., Long, D., Magazzeni, D.: Explainable planning. arXiv preprint arXiv:1709.10256 (2017)
Freitas, A., Schmidt, D., Meneguzzi, F., Vieira, R., Bordini, R.H.: Using ontologies as semantic representations of hierarchical task network planning domains. In: Proceedings of WWW, p. 124 (2014)
Galindo, C., Fernandez-Madrigal, J.A., Gonzalez, J.: Improving efficiency in mobile robot task planning through world abstraction. IEEE Trans. Robot. 20(4), 677–690 (2004)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning: theory and practice. Elsevier (2004)
Mugnier, M.L., Chein, M.: Conceptual graphs: fundamental notions. Revue d’intelligence artificielle 6(4), 365–406 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jedwabny, M., Bisquert, P., Croitoru, M. (2022). Scrutable Robot Actions Using a Hierarchical Ontological Model. In: Braun, T., Cristea, D., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2022. Lecture Notes in Computer Science(), vol 13403. Springer, Cham. https://doi.org/10.1007/978-3-031-16663-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-16663-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16662-4
Online ISBN: 978-3-031-16663-1
eBook Packages: Computer ScienceComputer Science (R0)