Skip to main content

Explainable and Explorable Decision Support

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2022)

Abstract

An effective decision support system requires a user’s trust in its results, which are based on expected utilities of different action plans. As such, a result needs to be explainable and explorable, providing alternatives and additional information in a proactive way, instead of retroactively answering follow-up questions to a single action plan as output. Therefore, this paper presents LEEDS, an algorithm that computes alternative action plans, identifies groups of interest, and answers marginal queries for those groups to provide a comprehensive overview supporting a user. LEEDS leverages the strengths of gate models, lifting, and the switched lifted junction tree algorithm for efficient explainable and explorable decision support.

T. Braun and M. Gehrke—Both authors contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dtai.cs.kuleuven.be/software/gcfove.

  2. 2.

    https://www.ifis.uni-luebeck.de/index.php?id=518.

References

  1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013). https://doi.org/10.1007/s10994-013-5385-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 11–18. AUAI Press (2011)

    Google Scholar 

  3. Braun, T.: Rescued from a sea of queries: exact inference in probabilistic relational models. Ph.D. thesis, University of Lübeck (2020)

    Google Scholar 

  4. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

    Chapter  Google Scholar 

  5. Braun, T., Möller, R.: Adaptive inference on probabilistic relational models. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 487–500. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2_44

    Chapter  Google Scholar 

  6. Braun, T., Möller, R.: Parameterised queries and lifted query answering. In: Proceedings of IJCAI 2018, pp. 4980–4986 (2018)

    Google Scholar 

  7. Gehrke, M., Braun, T., Möller, R.: Efficient multiple query answering in switched probabilistic relational models. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp. 104–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2_9

    Chapter  Google Scholar 

  8. Gehrke, M., Braun, T., Möller, R., Waschkau, A., Strumann, C., Steinhäuser, J.: Lifted maximum expected utility. In: Koch, F., et al. (eds.) AIH 2018. LNCS (LNAI), vol. 11326, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12738-1_10

    Chapter  Google Scholar 

  9. Gogate, V., Domingos, P.M.: Probabilistic theorem proving. In: UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July 2011, pp. 256–265. AUAI Press (2011)

    Google Scholar 

  10. Gray, F.: Pulse code communication (1953). U.S. Patent 2,632,058

    Google Scholar 

  11. Joshi, S., Kersting, K., Khardon, R.: Generalized first order decision diagrams for first order Markov decision processes. In: IJCAI, pp. 1916–1921 (2009)

    Google Scholar 

  12. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. B. Methodol. 50(2), 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Minka, T., Winn, J.: Gates. In: Advances in Neural Information Processing Systems, pp. 1073–1080 (2009)

    Google Scholar 

  14. Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings of the International Workshop on Statistical Relational Learning (2009)

    Google Scholar 

  15. Niepert, M., Van den Broeck, G.: Tractability through exchangeability: a new perspective on efficient probabilistic inference. In: AAAI, pp. 2467–2475 (2014)

    Google Scholar 

  16. Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI, vol. 3, pp. 985–991 (2003)

    Google Scholar 

  17. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: IJCAI 2005 Proceedings of the 19th International Joint Conference on AI (2005)

    Google Scholar 

  18. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 1140–1146. AAAI Press (2010)

    Google Scholar 

  19. Stalnaker, R.: Knowledge, belief and counterfactual reasoning in games. Econ. Philos. 12(2), 133–163 (1996)

    Article  Google Scholar 

  20. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)

    Article  MathSciNet  Google Scholar 

  21. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 2178–2185. IJCAI Organization (2011)

    Google Scholar 

  22. Wemmenhove, B., Mooij, J.M., Wiegerinck, W., Leisink, M., Kappen, H.J., Neijt, J.P.: Inference in the Promedas medical expert system. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 456–460. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73599-1_61

    Chapter  Google Scholar 

Download references

Acknowledgements

The research of MG was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2176 ‘Understanding Written Artefacts: Material, Interaction and Transmission in Manuscript Cultures’, project no. 390893796. The research was conducted within the scope of the Centre for the Study of Manuscript Cultures (CSMC) at Universität Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Gehrke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, T., Gehrke, M. (2022). Explainable and Explorable Decision Support. In: Braun, T., Cristea, D., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2022. Lecture Notes in Computer Science(), vol 13403. Springer, Cham. https://doi.org/10.1007/978-3-031-16663-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16663-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16662-4

  • Online ISBN: 978-3-031-16663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics