Abstract
Recent literature point out overconfidence problems in DNNs which is demonstrated as biased confidences in false predictions in medical image segmentation tasks regardless of the ground truth. To explore and identify the uncertain regions, we propose a post-training method with untargeted adversarial examples where the input image is iteratively perturbed in a direction that maximizes the loss of original and perturbed prediction. The perturbed predictions from these adversarial examples can be seen as unstable areas in terms of input variability; we theoretically observe that the gradient of negative class confidence in terms of input image plays a key role for perturbed outputs, and empirically show that a small adversarial perturbation can help find hidden regions in the output segmentation maps. Compared to previous methods for uncertainty estimation, our method yields competitive results for uncertain region findings on medical image datasets while only requiring one extra inference from a pre-trained model and short iteration of attack. We expect our novel findings can provide insights for future medical image segmentation problems where detection of subtle variations (e.g., lesions) are required.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alarab, I., Prakoonwit, S.: Adversarial attack for uncertainty estimation: identifying critical regions in neural networks. Neural Process. Lett. 54(3), 1805–1821 (2022)
Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7
Czolbe, S., Arnavaz, K., Krause, O., Feragen, A.: Is segmentation uncertainty useful? In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 715–726. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_55
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)
Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)
Galil, I., El-Yaniv, R.: Disrupting deep uncertainty estimation without harming accuracy. In: Advances in Neural Information Processing Systems, vol. 34, pp. 21285–21296 (2021)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)
Liew, S.L., et al.: A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. medRxiv (2021)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Rister, B., Yi, D., Shivakumar, K., Nobashi, T., Rubin, D.L.: CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci. Data 7(1), 1–9 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Tuna, O.F., Catak, F.O., Eskil, M.T.: Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools Appl. 81(8), 11479–11500 (2022)
Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482. PMLR (2019)
Zhang, J., et al.: Attacks which do not kill training make adversarial learning stronger. In: International Conference on Machine Learning, pp. 11278–11287. PMLR (2020)
Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Park, G., Hong, C., Kim, B., Kim, W.H. (2022). What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation?. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2022. Lecture Notes in Computer Science, vol 13563. Springer, Cham. https://doi.org/10.1007/978-3-031-16749-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-16749-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16748-5
Online ISBN: 978-3-031-16749-2
eBook Packages: Computer ScienceComputer Science (R0)