Skip to main content

What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13563))

Abstract

Recent literature point out overconfidence problems in DNNs which is demonstrated as biased confidences in false predictions in medical image segmentation tasks regardless of the ground truth. To explore and identify the uncertain regions, we propose a post-training method with untargeted adversarial examples where the input image is iteratively perturbed in a direction that maximizes the loss of original and perturbed prediction. The perturbed predictions from these adversarial examples can be seen as unstable areas in terms of input variability; we theoretically observe that the gradient of negative class confidence in terms of input image plays a key role for perturbed outputs, and empirically show that a small adversarial perturbation can help find hidden regions in the output segmentation maps. Compared to previous methods for uncertainty estimation, our method yields competitive results for uncertain region findings on medical image datasets while only requiring one extra inference from a pre-trained model and short iteration of attack. We expect our novel findings can provide insights for future medical image segmentation problems where detection of subtle variations (e.g., lesions) are required.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alarab, I., Prakoonwit, S.: Adversarial attack for uncertainty estimation: identifying critical regions in neural networks. Neural Process. Lett. 54(3), 1805–1821 (2022)

    Article  Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  5. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  6. Czolbe, S., Arnavaz, K., Krause, O., Feragen, A.: Is segmentation uncertainty useful? In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 715–726. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_55

    Chapter  Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  8. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  9. Galil, I., El-Yaniv, R.: Disrupting deep uncertainty estimation without harming accuracy. In: Advances in Neural Information Processing Systems, vol. 34, pp. 21285–21296 (2021)

    Google Scholar 

  10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  11. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  14. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  17. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)

    Google Scholar 

  18. Liew, S.L., et al.: A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. medRxiv (2021)

    Google Scholar 

  19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  20. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  21. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  22. Rister, B., Yi, D., Shivakumar, K., Nobashi, T., Rubin, D.L.: CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci. Data 7(1), 1–9 (2020)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  25. Tuna, O.F., Catak, F.O., Eskil, M.T.: Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools Appl. 81(8), 11479–11500 (2022)

    Article  Google Scholar 

  26. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482. PMLR (2019)

    Google Scholar 

  27. Zhang, J., et al.: Attacks which do not kill training make adversarial learning stronger. In: International Conference on Machine Learning, pp. 11278–11287. PMLR (2020)

    Google Scholar 

  28. Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Hwa Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 873 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, G., Hong, C., Kim, B., Kim, W.H. (2022). What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation?. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2022. Lecture Notes in Computer Science, vol 13563. Springer, Cham. https://doi.org/10.1007/978-3-031-16749-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16749-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16748-5

  • Online ISBN: 978-3-031-16749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics