Skip to main content

Same/Different Concept: An Embodied Spiking Neural Model in a Learning Context

  • Conference paper
  • First Online:
From Animals to Animats 16 (SAB 2022)

Abstract

Understanding abstract concept is a major topic in cognitive science. This complex phenomenon is studied under different approaches, but remains unexplained at the cellular level in a full sensorimotor to behavior model. In this study, an artificial spiking neural circuit is proposed to simulate the same/different (S/D) relational concept through the context of a simple discriminative visual learning task. This computational method is used as a brain controller for virtual and physical robots, reflecting the embodied perspective of the present model. Specifically, with an operant conditioning procedure, the robot learns to associate a correct left/right action from a two items side-by-side image and a positive reinforcer. Following the learning phase, a transfer test is performed and the robot succeeds with pairs of novel stimuli. As novelty, this learning process involving the S/D concept is entirely based on spike timing, synaptic changes and a sensorimotor robot model. This work could serve as a prototype toward the inclusion of other types of relational concepts, possibly sharing similar functional neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, F., Yusob, B., Hamed, H.N.A.: Computing with spiking neuron networks: a review. Int. J. Adv. Soft Comput. Appl. 6, 1–21 (2014)

    Google Scholar 

  2. Avarguès-Weber, A., Giurfa, M.: Conceptual learning by miniature brains. Proc. R. Soc. B Biol. Sci. 280(1772), 1–9 (2013)

    Google Scholar 

  3. Behrends, A., Scheiner, R.: Octopamine improves learning in newly emerged bees but not in old foragers. J. Exp. Biol. 215(7), 1076–1083 (2012)

    Article  Google Scholar 

  4. Bi, G.Q., Poo, M.M.: Activity-induced synaptic modifications in hippocampal culture: dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464–10472 (1998)

    Article  Google Scholar 

  5. Bing, Z., Baumann, I., Jiang, Z., Huang, K., Cai, C., Knoll, A.: Supervised learning in SNN via reward-modulated spike-timing-dependent plasticity for a target reaching vehicle. Front. Neurorobot. 13, 18 (2019)

    Article  Google Scholar 

  6. Blaisdell, A.P., Cook, R.G.: Two-itemsame-different concept learning in pigeons. Anim. Learn. Behav. 33(1), 67–77 (2005)

    Article  Google Scholar 

  7. Brown, M.F., Sayde, J.M.: Same/different discrimination by bumblebee colonies. Anim. Cogn. 16(1), 117–125 (2013)

    Article  Google Scholar 

  8. Cangelosi, A., Stramandinoli, F.: A review of abstract concept learning in embodied agents and robots. Philos. Trans. R. Soc. B Biol. Sci. 373(1752), 20170131 (2018). https://doi.org/10.1098/rstb.2017.0131. http://rstb.royalsocietypublishing.org/content/373/1752/20170131

  9. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  10. Chance, F.S., Aimone, J.B., Musuvathy, S.S., Smith, M.R., Vineyard, C.M., Wang, F.: Crossing the cleft: communication challenges between neuroscience and artificial intelligence. Front. Comput. Neurosci. 14, 39 (2020)

    Article  Google Scholar 

  11. Chittka, L., Jensen, K.: Animal cognition: concepts from apes to bees. Curr. Biol. 21(3), 116–119 (2011)

    Article  Google Scholar 

  12. Chuderski, A., Chuderska, A.: How working memory capacity constrains the learning of relational concepts. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 35 (2013)

    Google Scholar 

  13. Cyr, A., Avarguès-Weber, A., Theriault, F.: Sameness/difference spiking neural circuit as a relational concept precursor model: a bio-inspired robotic implementation. Biol. Inspired Cogn. Archit. 21, 59–66 (2017)

    Google Scholar 

  14. Cyr, A., Boukadoum, M., Poirier, P.: AI-SIMCOG: a simulator for spiking neurons and multiple animat’s behaviours. Neural Comput. Appl. 18(5), 431–446 (2009)

    Article  Google Scholar 

  15. Daniel, T.A., Cook, R.G., Katz, J.S.: Temporal dynamics of task switching and abstract-concept learning in pigeons. Front. Psychol. 6, 1334 (2015)

    Article  Google Scholar 

  16. Foncelle, A., et al.: Modulation of spike-timing dependent plasticity: towards the inclusion of a third factor in computational models. Front. Comput. Neurosci. 12, 49 (2018)

    Article  Google Scholar 

  17. Frémaux, N., Gerstner, W.: Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits 9, 85 (2016)

    Article  Google Scholar 

  18. Galizio, M., Mathews, M., Prichard, A., Bruce, K.E.: Generalized identity in a successive matching-to-sample procedure in rats: effects of number of exemplars and a masking stimulus. J. Exp. Anal. Behav. 110(3), 366–379 (2018)

    Article  Google Scholar 

  19. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  20. Giurfa, M.: Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5), 259–312 (2013)

    Article  Google Scholar 

  21. Giurfa, M.: Learning of sameness/difference relationships by honey bees: performance, strategies and ecological context. Curr. Opin. Behav. Sci. 37, 1–6 (2021)

    Article  Google Scholar 

  22. Giurfa, M., Zhang, S., Jenett, A., Menzel, R., Srinivasan, M.V.: The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410(6831), 930–933 (2001)

    Article  Google Scholar 

  23. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  24. Krichmar, J.L.: Neurorobotics-a thriving community and a promising pathway toward intelligent cognitive robots. Front. Neurorobot. 12, 42 (2018)

    Article  Google Scholar 

  25. Kuśmierz, Ł, Isomura, T., Toyoizumi, T.: Learning with three factors: modulating Hebbian plasticity with errors. Curr. Opin. Neurobiol. 46, 170–177 (2017)

    Article  Google Scholar 

  26. Lazareva, O.F., Gould, K., Linert, J., Caillaud, D., Gazes, R.P.: Smaller on the left? Flexible association between space and magnitude in pigeons (Columba livia) and blue jays (Cyanocitta cristata). J. Comp. Psychol. 134(1), 71 (2019)

    Article  Google Scholar 

  27. Lazarowski, L., Goodman, A., Galizio, M., Bruce, K.: Effects of set size on identity and oddity abstract-concept learning in rats. Anim. Cogn. 22(5), 733–742 (2019). https://doi.org/10.1007/s10071-019-01270-5

    Article  Google Scholar 

  28. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSEs. Science 275, 213–215 (1997)

    Article  Google Scholar 

  29. Pawlak, V., Wickens, J.R., Kirkwood, A., Kerr, J.N.: Timing is not everything: neuromodulation opens the STDP gate. Front. Synaptic Neurosci. 138 (2010)

    Google Scholar 

  30. Schultz, W.: Predictive reward signal of dopamine neurons. J. Neurophysiol. 80(1), 1–27 (1998)

    Article  Google Scholar 

  31. Smirnova, A.A., Obozova, T.A., Zorina, Z.A., Wasserman, E.A.: How do crows and parrots come to spontaneously perceive relations-between-relations? Curr. Opin. Behav. Sci. 37, 109–117 (2021)

    Article  Google Scholar 

  32. Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L.P., McGinnity, T.M.: A review of learning in biologically plausible spiking neural networks. Neural Netw. 122, 253–272 (2020)

    Article  Google Scholar 

  33. Truppa, V., Mortari, E.P., Garofoli, D., Privitera, S., Visalberghi, E.: Same/different concept learning by capuchin monkeys in matching-to-sample tasks. PLoS ONE 6(8), e23809 (2011)

    Article  Google Scholar 

  34. Wasserman, E.A., Young, M.E.: Same-different discrimination: the keel and backbone of thought and reasoning. J. Exp. Psychol. Anim. Behav. Process. 36(1), 3 (2010)

    Article  Google Scholar 

  35. Wright, A.A.: Concept learning and learning strategies. Psychol. Sci. 8(2), 119–123 (1997)

    Article  Google Scholar 

  36. Wright, A.A., Katz, J.S.: Generalization hypothesis of abstract-concept learning: learning strategies and related issues in Macaca mulatta, Cebus apella, and Columba livia. J. Comp. Psychol. 121(4), 387 (2007)

    Article  Google Scholar 

  37. Zentall, T.R.: Sameness may be a natural concept that does not require learning. Curr. Opin. Behav. Sci. 37, 7–12 (2021)

    Article  Google Scholar 

  38. Zentall, T.R., Andrews, D.M., Case, J.P.: Sameness may be a natural concept that does not require learning. Psychol. Sci. 29(7), 1185–1189 (2018)

    Article  Google Scholar 

  39. Zentall, T.R., Wasserman, E.A., Urcuioli, P.J.: Associative concept learning in animals. J. Exp. Anal. Behav. 101(1), 130–151 (2014)

    Article  Google Scholar 

  40. Zhang, S.: Visually guided decision making in foraging honeybees. Front. Neurosci. 6, 88 (2012)

    Google Scholar 

  41. Zhang, S., Srinivasan, M.V., Zhu, H., Wong, J.: Grouping of visual objects by honeybees. J. Exp. Biol. 207(19), 3289–3298 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Cyr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cyr, A., Thériault, F. (2022). Same/Different Concept: An Embodied Spiking Neural Model in a Learning Context. In: Cañamero, L., Gaussier, P., Wilson, M., Boucenna, S., Cuperlier, N. (eds) From Animals to Animats 16. SAB 2022. Lecture Notes in Computer Science(), vol 13499. Springer, Cham. https://doi.org/10.1007/978-3-031-16770-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16770-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16769-0

  • Online ISBN: 978-3-031-16770-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics