Skip to main content

Blind Single Image Super-Resolution via Iterated Shared Prior Learning

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13485))

Included in the following conference series:

  • 1533 Accesses

Abstract

In this paper, we adapt shared prior learning for blind single image super-resolution (SISR). From a variational perspective, we are aiming at minimizing an energy functional consisting of a learned data fidelity term and a data-driven prior, where the learnable parameters are computed in a mean-field optimal control problem. In the associated loss functional, we combine a supervised loss evaluated on synthesized observations and an unsupervised Wasserstein loss for real observations, in which local statistics of images with different resolutions are compared. In shared prior learning, only the parameters of the prior are shared among both loss functions. The kernel estimate is updated iteratively after each step of shared prior learning. In numerous numerical experiments, we achieve state-of-the-art results for blind SISR with a low number of learnable parameters and small training sets to account for real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: CVPR (2017)

    Google Scholar 

  2. Anwar, S., Barnes, N.: Densely residual Laplacian super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3021088

    Article  Google Scholar 

  3. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: NIPS, pp. 284–293 (2019)

    Google Scholar 

  4. Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), 1111–1138 (2015). https://doi.org/10.1137/141000439

    Article  MathSciNet  MATH  Google Scholar 

  5. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010). https://doi.org/10.1137/090769521

    Article  MathSciNet  MATH  Google Scholar 

  6. Britanak, V., Yip, P.C., Rao, K.: Discrete Cosine and Sine Transforms. Academic Press (2006). https://doi.org/10.1016/b978-012373624-6/50003-5

  7. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  Google Scholar 

  8. E, W., Han, J., Li, Q.: A mean-field optimal control formulation of deep learning. Res. Math. Sci. 6(1), 10 (2019). https://doi.org/10.1007/s40687-018-0172-y

  9. Effland, A., Kobler, E., Kunisch, K., Pock, T.: Variational networks: an optimal control approach to early stopping variational methods for image restoration. J. Math. Imaging Vision 62(3), 396–416 (2020). https://doi.org/10.1007/s10851-019-00926-8

  10. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2008). https://doi.org/10.1093/comjnl/bxm075

    Article  Google Scholar 

  11. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: CVPR (2019)

    Google Scholar 

  12. Hämarik, U., Kaltenbacher, B., Kangro, U., Resmerita, E.: Regularization by discretization in Banach spaces. Inverse Prob. 32(3), 035004 (2016). https://doi.org/10.1088/0266-5611/32/3/035004

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imageNet classification. In: ICCV, pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  14. Huang, J., Mumford, D.: Statistics of natural images and models. In: CVPR, vol. 1, pp. 541–547 (1999). https://doi.org/10.1109/CVPR.1999.786990

  15. Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems. In: CVPR (2020)

    Google Scholar 

  17. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation: a stable regularizer for inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3124086

    Article  Google Scholar 

  18. Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54, 83–103 (2003). https://doi.org/10.1023/A:1023705401078

    Article  MATH  Google Scholar 

  19. Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Unfolding the alternating optimization for blind super resolution. In: Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  20. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  21. Mumford, D., Gidas, B.: Stochastic models for generic images. Quart. Appl. Math. 59(1), 85–111 (2001). https://doi.org/10.1090/qam/1811096

    Article  MathSciNet  MATH  Google Scholar 

  22. Peyré, G., Cuturi, M.: Computational optimal transport: with applications to data science. In: Now Foundations and Trends (2019). https://doi.org/10.1561/2200000073

  23. Pinetz, T., Kobler, E., Pock, T., Effland, A.: Shared prior learning of energy-based models for image reconstruction. SIAM J. Imaging Sci. 14(4), 1706–1748 (2021). https://doi.org/10.1137/20M1380016

    Article  MathSciNet  MATH  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009). https://doi.org/10.1007/s11263-008-0197-6

    Article  MATH  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  27. Santambrogio, F.: Optimal Transport for Applied Mathematicians. PNDETA, vol. 87. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20828-2

    Book  MATH  Google Scholar 

  28. Shermeyer, J., Van Etten, A.: The effects of super-resolution on object detection performance in satellite imagery. In: CVPR (2019)

    Google Scholar 

  29. Stockert, J.C., Castro, A.B.: Fluorescence Microscopy In Life Sciences. Bentham Science Publishers (2017)

    Google Scholar 

  30. Sun, W., Chen, Z.: Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 29, 4027–4040 (2020). https://doi.org/10.1109/TIP.2020.2970248

    Article  MATH  Google Scholar 

  31. Villani, C.: Optimal transport: old and new. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

  32. Xie, Y., Wang, X., Wang, R., Zha, H.: A fast proximal point method for computing exact Wasserstein distance. In: UAI (2019)

    Google Scholar 

  33. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia 21(12), 3106–3121 (2019). https://doi.org/10.1109/TMM.2019.2919431

    Article  Google Scholar 

  34. Yu, J., Fan, Y., Huang, T.: Wide activation for efficient image and video super-resolution. In: BMVC (2019)

    Google Scholar 

  35. Zhang, K., Van Gool, L., Timofte, R.: Deep unfolding network for image super-resolution. In: CVPR (2020)

    Google Scholar 

  36. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: CVPR (2017)

    Google Scholar 

  37. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deepresidual channel attention networks. In: ECCV (2018)

    Google Scholar 

  38. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: CVPR (2019)

    Google Scholar 

  39. Zhao, N., Wei, Q., Basarab, A., Dobigeon, N., Kouamé, D., Tourneret, J.Y.: Fast single image super-resolution using a new analytical solution for \(\ell _2-\ell _2\) problems. IEEE Trans. Image Process. 25(8), 3683–3697 (2016)

    Article  MathSciNet  Google Scholar 

  40. Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (FRAME): towards a unified theory for texture modeling. Int. J. Comput. Vis. 27(2), 107–126 (1998). https://doi.org/10.1023/A:1007925832420

    Article  Google Scholar 

Download references

Funding

This work was supported by the German Research Foundation under Germany’s Excellence Strategy - EXC-2047/1 – 390685813 and – EXC2151 – 390873048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pinetz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7225 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinetz, T., Kobler, E., Pock, T., Effland, A. (2022). Blind Single Image Super-Resolution via Iterated Shared Prior Learning. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics