Skip to main content

Global Hierarchical Attention for 3D Point Cloud Analysis

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Abstract

We propose a new attention mechanism, called Global Hierarchical Attention (GHA), for 3D point cloud analysis. GHA approximates the regular global dot-product attention via a series of coarsening and interpolation operations over multiple hierarchy levels. The advantage of GHA is two-fold. First, it has linear complexity with respect to the number of points, enabling the processing of large point clouds. Second, GHA inherently possesses the inductive bias to focus on spatially close points, while retaining the global connectivity among all points. Combined with a feedforward network, GHA can be inserted into many existing network architectures. We experiment with multiple baseline networks and show that adding GHA consistently improves performance across different tasks and datasets. For the task of semantic segmentation, GHA gives a +1.7% mIoU increase to the MinkowskiEngine baseline on ScanNet. For the 3D object detection task, GHA improves the CenterPoint baseline by +0.5% mAP on the nuScenes dataset, and the 3DETR baseline by +2.1% mAP\(_{25}\) and +1.5% mAP\(_{50}\) on ScanNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., et al.: 3d semantic parsing of large-scale indoor spaces. In: CVPR (2016)

    Google Scholar 

  2. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Caron, M.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  5. Chen, C., Chen, Z., Zhang, J., Tao, D.: SASA: semantics-augmented set abstraction for point-based 3D object detection. In: AAAI (2022)

    Google Scholar 

  6. Cheng, B., Sheng, L., Shi, S., Yang, M., Xu, D.: Back-tracing representative points for voting-based 3D object detection in point clouds. In: CVPR (2021)

    Google Scholar 

  7. Choromanski, K., et al.: Rethinking attention with performers. In: ICLR (2020)

    Google Scholar 

  8. Choy, C., Gwak, J., Savarese, S.: 4D Spatio-Temporal ConvNets: Minkowski convolutional neural networks. In: CVPR (2019)

    Google Scholar 

  9. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: ICCV (2019)

    Google Scholar 

  10. Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for general 3D object detection (2020). https://github.com/open-mmlab/mmdetection3d

  11. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR (2017)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  13. Fan, H., Yang, L., Kankanhalli, M.: Point 4D transformer networks for spatio-temporal modeling in point cloud videos. In: CVPR (2021)

    Google Scholar 

  14. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. IJRR 32(11), 1231–1237 (2013)

    Google Scholar 

  15. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  16. Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point cloud transformer. Comput. Visual Media 7(2), 187–199 (2021). https://doi.org/10.1007/s41095-021-0229-5

    Article  Google Scholar 

  17. Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.W., Jia, J.: Hierarchical point-edge interaction network for point cloud semantic segmentation. In: ICCV (2019)

    Google Scholar 

  18. Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet for joint object categorization and unsupervised pose estimation from multi-view images. PAMI 43 (2021)

    Google Scholar 

  19. Landrieu, L., Boussaha, M.: Point cloud oversegmentation with graph-structured deep metric learning. In: CVPR (2019)

    Google Scholar 

  20. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: CVPR (2018)

    Google Scholar 

  21. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  22. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: NeurIPS (2018)

    Google Scholar 

  23. Li, G., et al.: Deepgcns: Making gcns go as deep as cnns. PAMI (2021)

    Google Scholar 

  24. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  25. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3D object detection via transformers. In: ICCV (2021)

    Google Scholar 

  26. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: ICCV (2019)

    Google Scholar 

  27. Mao, J., et al.: Voxel transformer for 3D object detection. In: ICCV (2021)

    Google Scholar 

  28. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3D object detection. In: ICCV (2021)

    Google Scholar 

  29. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3D object detection with pointformer. In: CVPR (2021)

    Google Scholar 

  30. Park, C., Jeong, Y., Cho, M., Park, J.: Fast point transformer. arXiv:2112.04702 (2021)

  31. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: ICCV (2019)

    Google Scholar 

  32. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: CVPR (2018)

    Google Scholar 

  33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  34. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  35. Qian, X., et al.: MLCVNet: multi-level context VoteNet for 3D object detection. In: CVPR (2020)

    Google Scholar 

  36. Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do Vision Transformers See Like Convolutional Neural Networks? arXiv:2108.08810 (2021)

  37. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)

    Google Scholar 

  38. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: CVPR (2020)

    Google Scholar 

  39. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  40. Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. PAMI (2020)

    Google Scholar 

  41. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: CVPR (2018)

    Google Scholar 

  42. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)

    Google Scholar 

  43. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: CVPR (2018)

    Google Scholar 

  44. Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: a survey. arXiv:2009.06732 (2020)

  45. Thomas, H., Qi, C., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.: KPConv: flexible and deformable convolution for point clouds. In: ICCV (2019)

    Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  47. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: CVPR (2019)

    Google Scholar 

  48. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv:2006.04768 (2020)

  49. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: ICCV (2019)

    Google Scholar 

  50. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics 38(5) (2019). https://doi.org/10.1145/3326362

  51. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: CVPR (2019)

    Google Scholar 

  52. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR (2015)

    Google Scholar 

  53. Xie, Q., et al.: VENet: voting enhancement network for 3D object detection. In: ICCV (2021)

    Google Scholar 

  54. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6

    Chapter  Google Scholar 

  55. Yan, Y.: SpConv: Spatially Sparse Convolution Library. https://github.com/traveller59/spconv. Accessed 04 Mar 2022

  56. Yan, Y., Yuxing Mao, B.L.: SECOND: Sparsely Embedded Convolutional Detection. Sensors (2018)

    Google Scholar 

  57. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: CVPR (2020)

    Google Scholar 

  58. Ye, S., Chen, D., Han, S., Liao, J.: Learning with noisy labels for robust point cloud segmentation. In: ICCV (2021)

    Google Scholar 

  59. Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graphics 35 (2016)

    Google Scholar 

  60. Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: CVPR (2021)

    Google Scholar 

  61. Zaheer, M., et al.: Big bird: transformers for longer sequences. In: NeurIPS (2020)

    Google Scholar 

  62. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: CVPR (2017)

    Google Scholar 

  63. Zhang, Z., Sun, B., Yang, H., Huang, Q.: H3DNet: 3D object detection using hybrid geometric primitives. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_19

    Chapter  Google Scholar 

  64. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: CVPR (2020)

    Google Scholar 

  65. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: CVPR (2019)

    Google Scholar 

  66. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV (2021)

    Google Scholar 

  67. Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in LiDAR point clouds. In: CoRL (2019)

    Google Scholar 

  68. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2017)

    Google Scholar 

  69. Zhu, Z., Soricut, R.: H-Transformer-1D: fast one-dimensional hierarchical attention for sequences. In: ACL (2021)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the BMBF project 6GEM (16KISK036K) and the ERC Consolidator Grant DeeVise (ERC-2017-COG-773161). We thank Jonas Schult, Markus Knoche, Ali Athar, and Christian Schmidt for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Jia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2699 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, D., Hermans, A., Leibe, B. (2022). Global Hierarchical Attention for 3D Point Cloud Analysis. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics