Abstract
We propose a new attention mechanism, called Global Hierarchical Attention (GHA), for 3D point cloud analysis. GHA approximates the regular global dot-product attention via a series of coarsening and interpolation operations over multiple hierarchy levels. The advantage of GHA is two-fold. First, it has linear complexity with respect to the number of points, enabling the processing of large point clouds. Second, GHA inherently possesses the inductive bias to focus on spatially close points, while retaining the global connectivity among all points. Combined with a feedforward network, GHA can be inserted into many existing network architectures. We experiment with multiple baseline networks and show that adding GHA consistently improves performance across different tasks and datasets. For the task of semantic segmentation, GHA gives a +1.7% mIoU increase to the MinkowskiEngine baseline on ScanNet. For the 3D object detection task, GHA improves the CenterPoint baseline by +0.5% mAP on the nuScenes dataset, and the 3DETR baseline by +2.1% mAP\(_{25}\) and +1.5% mAP\(_{50}\) on ScanNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armeni, I., et al.: 3d semantic parsing of large-scale indoor spaces. In: CVPR (2016)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Caron, M.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Chen, C., Chen, Z., Zhang, J., Tao, D.: SASA: semantics-augmented set abstraction for point-based 3D object detection. In: AAAI (2022)
Cheng, B., Sheng, L., Shi, S., Yang, M., Xu, D.: Back-tracing representative points for voting-based 3D object detection in point clouds. In: CVPR (2021)
Choromanski, K., et al.: Rethinking attention with performers. In: ICLR (2020)
Choy, C., Gwak, J., Savarese, S.: 4D Spatio-Temporal ConvNets: Minkowski convolutional neural networks. In: CVPR (2019)
Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: ICCV (2019)
Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for general 3D object detection (2020). https://github.com/open-mmlab/mmdetection3d
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In: CVPR (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
Fan, H., Yang, L., Kankanhalli, M.: Point 4D transformer networks for spatio-temporal modeling in point cloud videos. In: CVPR (2021)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. IJRR 32(11), 1231–1237 (2013)
Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)
Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point cloud transformer. Comput. Visual Media 7(2), 187–199 (2021). https://doi.org/10.1007/s41095-021-0229-5
Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.W., Jia, J.: Hierarchical point-edge interaction network for point cloud semantic segmentation. In: ICCV (2019)
Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet for joint object categorization and unsupervised pose estimation from multi-view images. PAMI 43 (2021)
Landrieu, L., Boussaha, M.: Point cloud oversegmentation with graph-structured deep metric learning. In: CVPR (2019)
Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: CVPR (2018)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: NeurIPS (2018)
Li, G., et al.: Deepgcns: Making gcns go as deep as cnns. PAMI (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3D object detection via transformers. In: ICCV (2021)
Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: ICCV (2019)
Mao, J., et al.: Voxel transformer for 3D object detection. In: ICCV (2021)
Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3D object detection. In: ICCV (2021)
Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3D object detection with pointformer. In: CVPR (2021)
Park, C., Jeong, Y., Cho, M., Park, J.: Fast point transformer. arXiv:2112.04702 (2021)
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: ICCV (2019)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: CVPR (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)
Qian, X., et al.: MLCVNet: multi-level context VoteNet for 3D object detection. In: CVPR (2020)
Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do Vision Transformers See Like Convolutional Neural Networks? arXiv:2108.08810 (2021)
Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)
Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: CVPR (2020)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)
Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. PAMI (2020)
Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: CVPR (2018)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)
Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: CVPR (2018)
Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: a survey. arXiv:2009.06732 (2020)
Thomas, H., Qi, C., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.: KPConv: flexible and deformable convolution for point clouds. In: ICCV (2019)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: CVPR (2019)
Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv:2006.04768 (2020)
Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: ICCV (2019)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics 38(5) (2019). https://doi.org/10.1145/3326362
Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: CVPR (2019)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR (2015)
Xie, Q., et al.: VENet: voting enhancement network for 3D object detection. In: ICCV (2021)
Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6
Yan, Y.: SpConv: Spatially Sparse Convolution Library. https://github.com/traveller59/spconv. Accessed 04 Mar 2022
Yan, Y., Yuxing Mao, B.L.: SECOND: Sparsely Embedded Convolutional Detection. Sensors (2018)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: CVPR (2020)
Ye, S., Chen, D., Han, S., Liao, J.: Learning with noisy labels for robust point cloud segmentation. In: ICCV (2021)
Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graphics 35 (2016)
Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: CVPR (2021)
Zaheer, M., et al.: Big bird: transformers for longer sequences. In: NeurIPS (2020)
Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: CVPR (2017)
Zhang, Z., Sun, B., Yang, H., Huang, Q.: H3DNet: 3D object detection using hybrid geometric primitives. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_19
Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: CVPR (2020)
Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: CVPR (2019)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV (2021)
Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in LiDAR point clouds. In: CoRL (2019)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2017)
Zhu, Z., Soricut, R.: H-Transformer-1D: fast one-dimensional hierarchical attention for sequences. In: ACL (2021)
Acknowledgements
This project was funded by the BMBF project 6GEM (16KISK036K) and the ERC Consolidator Grant DeeVise (ERC-2017-COG-773161). We thank Jonas Schult, Markus Knoche, Ali Athar, and Christian Schmidt for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jia, D., Hermans, A., Leibe, B. (2022). Global Hierarchical Attention for 3D Point Cloud Analysis. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-16788-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16787-4
Online ISBN: 978-3-031-16788-1
eBook Packages: Computer ScienceComputer Science (R0)