Abstract
With improving acquisition technologies, the inspection and monitoring of structures has become a field of application for deep learning. While other research focuses on the design of neural network architectures, this work points out the applicability of transfer learning for detecting cracks and other structural defects. Being a high-performer on the Cityscapes benchmark, hierarchical multi-scale attention [43] also renders suitable for transfer learning in the domain of structural defects. Using the joint scales of 0.25, 0.5, and 1.0, the approach achieves 92% mean intersection-over-union on the test set. The effectiveness of multi-scale attention is demonstrated for class demarcation on large scales and class determination on lower scales. Furthermore, a line-based tolerant intersection-over-union metric is introduced for more robust benchmarking in the field of crack detection. The dataset of 743 images covering crack, spalling, corrosion, efflorescence, vegetation, and control point is unprecedented in terms of quantity and realism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset is available at https://github.com/ben-z-original/s2ds.
- 2.
Code is available at https://github.com/ben-z-original/detectionhma..
References
Atha, D.J., Jahanshahi, M.R.: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 17(5), 1110–1128 (2018)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Benz, C., Rodehorst, V.: Model-based crack width estimation using rectangle transform. In: 17th International Conference on Machine Vision and Applications (MVA), pp. 1–5. IEEE (2021)
Bianchi, E., Abbott, A.L., Tokekar, P., Hebdon, M.: Coco-bridge: structural detail data set for bridge inspections. J. Comput. Civil Eng. 35(3), 04021003 (2021)
Borse, S., Wang, Y., Zhang, Y., Porikli, F.: Inverseform: a loss function for structured boundary-aware segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5911 (2021)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O.: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civil Infrastruct. Eng. 33(9), 731–747 (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dorafshan, S., Thomas, R.J., Maguire, M.: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186, 1031–1045 (2018)
Dorafshan, S., Thomas, R.J., Maguire, M.: Sdnet 2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 21, 1664–1668 (2018)
Dosovitskiy, A., et al.: An image is worth 16\(times\)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Dung, C.V., et al.: Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 99, 52–58 (2019)
Duy, L.D., Anh, N.T., Son, N.T., Tung, N.V., Duong, N.B., Khan, M.H.R.: Deep learning in semantic segmentation of rust in images. In: Proceedings of the 9th International Conference on Software and Computer Applications, pp. 129–132 (2020)
Forkan, A.R.M., et al.: Corrdetector: a framework for structural corrosion detection from drone images using ensemble deep learning. arXiv preprint arXiv:2102.04686 (2021)
Gao, Y., Mosalam, K.M.: Deep transfer learning for image-based structural damage recognition. Comput.-Aided Civil Infrastruct. Eng. 33(9), 748–768 (2018)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)
Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Commun. ACM 32(3), 359–373 (1989)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hoskere, V., Narazaki, Y., Hoang, T., Spencer Jr, B.: Vision-based structural inspection using multiscale deep convolutional neural networks. arXiv preprint arXiv:1805.01055 (2018)
Hoskere, V., Narazaki, Y., Hoang, T.A., Spencer, B., Jr.: Madnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure. J. Civil Struct Health Monit 10, 757–773 (2020)
Katsamenis, I., Protopapadakis, E., Doulamis, A., Doulamis, N., Voulodimos, A.: Pixel-Level corrosion detection on metal constructions by fusion of deep learning semantic and contour segmentation. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12509, pp. 160–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64556-4_13
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., Miao, X., Mertz, C., Xu, C., Kong, H.: Crackformer: transformer network for fine-grained crack detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3783–3792 (2021)
Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: Deepcrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)
Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using u-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and pattern recognition, pp. 3431–3440 (2015)
Mohan, A., Poobal, S.: Crack detection using image processing: a critical review and analysis. Alexandria Eng. J. 57(2), 787–798 (2018)
Narazaki, Y., Hoskere, V., Yoshida, K., Spencer, B.F., Fujino, Y.: Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts. Mech. Syst. Signal Process. 160, 107850 (2021)
Ortiz, A., Bonnin-Pascual, F., Garcia-Fidalgo, E., et al.: Vision-based corrosion detection assisted by a micro-aerial vehicle in a vessel inspection application. Sensors 16(12), 2118 (2016)
Ortiz, A., Bonnin-Pascual, F., Garcia-Fidalgo, E., Company, J.P.: Visual inspection of vessels by means of a micro-aerial vehicle: an artificial neural network approach for corrosion detection. In: Robot 2015: Second Iberian Robotics Conference. AISC, vol. 418, pp. 223–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27149-1_18
Pan, X., Yang, T.: Postdisaster image-based damage detection and repair cost estimation of reinforced concrete buildings using dual convolutional neural networks. Comput.-Aided Civil Infrastruct. Eng. 35(5), 495–510 (2020)
Pauly, L., Hogg, D., Fuentes, R., Peel, H.: Deeper networks for pavement crack detection. In: Proceedings of the 34th ISARC, pp. 479–485. IAARC (2017)
Perez, H., Tah, J.H., Mosavi, A.: Deep learning for detecting building defects using convolutional neural networks. Sensors 19(16), 3556 (2019)
Petricca, L., Moss, T., Figueroa, G., Broen, S.: Corrosion detection using AI: a comparison of standard computer vision techniques and deep learning model. In: Proceedings of the Sixth International Conference on Computer Science, Engineering and Information Technology, vol. 91, p. 99 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and pattern recognition, pp. 1–9 (2015)
Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821 (2020)
Xu, Y., Xiao, T., Zhang, J., Yang, K., Zhang, Z.: Scale-invariant convolutional neural networks. arXiv preprint arXiv:1411.6369 (2014)
Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)
Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., Yang, X.: Automatic pixel-level crack detection and measurement using fully convolutional network. Comput.-Aided Civil Infrastruct. Eng. 33(12), 1090–1109 (2018)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11
Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: IEEE International Conference on Image Processing (ICIP), pp. 3708–3712. IEEE (2016)
Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)
Zhao, S., Wang, Y., Yang, Z., Cai, D.: Region mutual information loss for semantic segmentation. arXiv preprint arXiv:1910.12037 (2019)
Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)
Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vision 127(3), 302–321 (2019)
Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: Cracktree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)
Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: Deepcrack: learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2018)
Acknowledgment
The authors would like to thank DB Netz AG and Leonhardt, Andrä und Partner (LAP) for providing numerous images as well as their consent to publication. Without them this work would have been impossible.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Benz, C., Rodehorst, V. (2022). Image-Based Detection of Structural Defects Using Hierarchical Multi-scale Attention. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-16788-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16787-4
Online ISBN: 978-3-031-16788-1
eBook Packages: Computer ScienceComputer Science (R0)