Skip to main content

End-to-End Single Shot Detector Using Graph-Based Learnable Duplicate Removal

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Abstract

Non-Maximum Suppression (NMS) is widely used to remove duplicates in object detection. In strong disagreement with the deep learning paradigm, NMS often remains as the only heuristic step. Learning NMS methods have been proposed that are either designed for Faster-RCNN or rely on separate networks. In contrast, learning NMS for SSD models is not well investigated. In this paper, we show that even a very simple rescoring network can be trained end-to-end with an underlying SSD model to solve the duplicate removal problem efficiently. For this, detection scores and boxes are refined from image features by modeling relations between detections in a Graph Neural Network (GNN). Our approach is applicable to the large number of object proposals in SSD using a pre-filtering head. It can easily be employed in arbitrary SSD-like models with weight-shared box predictor. Experiments on MS-COCO and KITTI show that our method improves accuracy compared with other duplicate removal methods at significantly lower inference time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  6. Hosang, J., Benenson, R., Schiele, B.: A convnet for non-maximum suppression. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 192–204. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_16

    Chapter  Google Scholar 

  7. Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4507–4515 (2017)

    Google Scholar 

  8. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  9. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  10. Huang, J.S., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Qi, L., Liu, S., Shi, J., Jia, J.: Sequential context encoding for duplicate removal. arXiv preprint arXiv:1810.08770 (2018)

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  19. Roh, B., Shin, J., Shin, W., Kim, S.: Sparse DETR: efficient end-to-end object detection with learnable sparsity. arXiv preprint arXiv:2111.14330 (2021)

  20. Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2325–2333 (2016)

    Google Scholar 

  21. Sun, P., Jiang, Y., Xie, E., Yuan, Z., Wang, C., Luo, P.: OneNet: towards end-to-end one-stage object detection. arXiv preprint arXiv:2012.05780 (2020)

  22. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  23. Tan, Z., Nie, X., Qian, Q., Li, N., Li, H.: Learning to rank proposals for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8273–8281 (2019)

    Google Scholar 

  24. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  26. Zhou, Q., Yu, C., Shen, C., Wang, Z., Li, H.: Object detection made simpler by eliminating heuristic NMS. arXiv preprint arXiv:2101.11782 (2021)

  27. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  28. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgement

The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Climate Action within the project “KI Delta Learning” (Förderkennzeichen 19A19013A). The authors would like to thank the consortium for the successful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxiao Ding .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 27923 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, S., Rehder, E., Schneider, L., Cordts, M., Gall, J. (2022). End-to-End Single Shot Detector Using Graph-Based Learnable Duplicate Removal. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics