Skip to main content

Robust Object Detection Using Knowledge Graph Embeddings

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Abstract

Object recognition for the most part has been treated as a one-hot problem that assumes classes to be discrete and unrelated. In this work, we challenge the prevalence of the one-hot approach in closed-set object detection. We evaluate the error statistics of learned class embeddings from a one-hot approach with knowledge embeddings that inherit semantic structure from natural language processing or knowledge graphs, as widely applied in open world object detection. Extensive experimental results on multiple knowledge-embeddings as well as distance metrics indicate that knowledge-based class representations result in more semantically grounded misclassifications while performing on par compared to one-hot methods on the challenging COCO and Cityscapes object detection benchmarks. We generalize our findings to multiple object detection architectures by proposing a knowledge-embedded design knowledge graph embedded (KGE) for keypoint-based and transformer-based object detection architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Google Knowledge Graph. https://developers.google.com/knowledge-graph

  2. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

  3. Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 397–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_24

    Chapter  Google Scholar 

  4. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209–1218 (2018)

    Google Scholar 

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Dai, X., et al.: Dynamic head: unifying object detection heads with attentions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7373–7382 (2021)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Du, Y., Wei, F., et al.: Learning to prompt for open-vocabulary object detection with vision-language model. arXiv preprint arXiv:2203.14940 (2022)

  10. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Proceedings of the Conference on Neural Information Processing Systems, vol.26 (2013)

    Google Scholar 

  11. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)

    Google Scholar 

  12. Gosala, N., Valada, A.: Bird’s-eye-view panoptic segmentation using monocular frontal view images. arXiv preprint arXiv:2108.03227 (2021)

  13. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)

  14. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  15. Gupta, D., Anantharaman, A., Mamgain, N., Balasubramanian, V.N., Jawahar, C., et al.: A multi-space approach to zero-shot object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1209–1217 (2020)

    Google Scholar 

  16. Hayat, N., Hayat, M., Rahman, S., Khan, S., Zamir, S.W., Khan, F.S.: Synthesizing the unseen for zero-shot object detection. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Hurtado, J.V., Mohan, R., Burgard, W., Valada, A.: MOPT: multi-object panoptic tracking. arXiv preprint arXiv:2004.08189 (2020)

  20. Kornblith, S., Lee, H., Chen, T., Norouzi, M.: Why do better loss functions lead to less transferable features?. arXiv preprint arXiv:2010.16402 (2021)

  21. Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 128(7), 1956–1981 (2020)

    Article  Google Scholar 

  22. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  23. Li, Q., Zhang, Y., Sun, S., Zhao, X., Li, K., Tan, M.: Rethinking semantic-visual alignment in zero-shot object detection via a softplus margin focal loss. Neurocomputing 449, 117–135 (2021)

    Article  Google Scholar 

  24. Li, Y., Li, P., Cui, H., Wang, D.: Inference fusion with associative semantics for unseen object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1993–2001 (2021)

    Google Scholar 

  25. Li, Y., Wang, T., Kang, B., Tang, S., Wang, C., Li, J., Feng, J.: Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10991–11000 (2020)

    Google Scholar 

  26. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  27. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2980–2988 (2017)

    Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  29. Liu, S., Huang, D., Wang, Y.: Adaptive NMS: refining pedestrian detection in a crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6459–6468 (2019)

    Google Scholar 

  30. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  31. Ma, Z., Luo, G., et al.: Open-vocabulary one-stage detection with hierarchical visual-language knowledge distillation. arXiv preprint arXiv:2203.10593 (2022)

  32. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  33. Perez-Rua, J.M., Zhu, X., Hospedales, T.M., Xiang, T.: Incremental few-shot object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 13846–13855 (2020)

    Google Scholar 

  34. Qiao, S., Chen, L.C., Yuille, A.: Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10213–10224 (2021)

    Google Scholar 

  35. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  36. Rahman, S., Khan, S., Barnes, N.: Improved visual-semantic alignment for zero-shot object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11932–11939 (2020)

    Google Scholar 

  37. Rahman, S., Khan, S.H., Porikli, F.: Zero-shot object detection: joint recognition and localization of novel concepts. Int. J. Comput. Vis. 128(12), 2979–2999 (2020)

    Article  Google Scholar 

  38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  39. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without catastrophic forgetting. In: International Conference on Computer Vision, pp. 3400–3409 (2017)

    Google Scholar 

  40. Singh, K.K., Mahajan, D., Grauman, K., Lee, Y.J., Feiszli, M., Ghadiyaram, D.: Don’t judge an object by its context: learning to overcome contextual bias. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11070–11078 (2020)

    Google Scholar 

  41. Sirohi, K., Mohan, R., Büscher, D., Burgard, W., Valada, A.: EfficientLPS: efficient lidar panoptic segmentation. arXiv preprint arXiv:2102.08009 (2021)

  42. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  43. Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  44. Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: a new gradient balance approach for long-tailed object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1694 (2021)

    Google Scholar 

  45. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9627–9636 (2019)

    Google Scholar 

  46. Valverde, F.R., Hurtado, J.V., Valada, A.: There is more than meets the eye: self-supervised multi-object detection and tracking with sound by distilling multimodal knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11612–11621 (2021)

    Google Scholar 

  47. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. arXiv preprint arXiv:2012.09740, pp. 2495–2504 (2020)

  48. Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6857–6866 (2018)

    Google Scholar 

  49. Woo, S., Kim, D., Daejeon, K., Cho, D.E., So Kweon, I.E., Kweon, I.S., Cho, D.E.: LinkNet: relational embedding for scene graph. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 560–570 (2018)

    Google Scholar 

  50. Xie, J., Zheng, S.: ZSD-YOLO: zero-shot yolo detection using vision-language knowledge distillation. arXiv preprint arXiv:2109.12066 (2021)

  51. Yan, C., Chang, X., Luo, M., Liu, H., Zhang, X., Zheng, Q.: Semantics-guided contrastive network for zero-shot object detection. IEEE Trans. Patt. Anal. Mach. Intell. pp. 1–1 (2022)

    Google Scholar 

  52. Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. arXiv preprint arXiv:2107.00641 (2021)

  53. Yatskar, M., Ordonez, V., Farhadi, A.: Stating the obvious: extracting visual common sense knowledge. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 193–198 (2016)

    Google Scholar 

  54. cui Zhang, C., et al.: A simple and effective use of object-centric images for long-tailed object detection. arXiv preprint arXiv:2102.08884 (2021)

  55. Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2021–2030 (2017)

    Google Scholar 

  56. Zheng, Y., Huang, R., Han, C., Huang, X., Cui, L.: Background learnable cascade for zero-shot object detection. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  57. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv preprint arXiv:2103.07461 (2021)

  58. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  59. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Valada .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 681 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, C., Braun, A., Valada, A. (2022). Robust Object Detection Using Knowledge Graph Embeddings. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics