Skip to main content

A Framework for Benchmarking Real-Time Embedded Object Detection

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13485))

Included in the following conference series:

Abstract

Object detection is one of the key tasks in many applications of computer vision. Deep Neural Networks (DNNs) are undoubtedly a well-suited approach for object detection. However, such DNNs need highly adapted hardware together with hardware-specific optimization to guarantee high efficiency during inference. This is especially the case when aiming for efficient object detection in video streaming applications on limited hardware such as edge devices. Comparing vendor-specific hardware and related optimization software pipelines in a fair experimental setup is a challenge. In this paper, we propose a framework that uses a host computer with a host software application together with a light-weight interface based on the Message Queuing Telemetry Transport (MQTT) protocol. Various different target devices with target apps can be connected via MQTT with this host computer. With well-defined and standardized MQTT messages, object detection results can be reported to the host computer, where the results are evaluated without harming or influencing the processing on the device. With this quite generic framework, we can measure the object detection performance, the runtime, and the energy efficiency at the same time. The effectiveness of this framework is demonstrated in multiple experiments that offer deep insights into the optimization of DNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blalock, D., Gonzalez Ortiz, J., Frankle, J., Guttag, J.: What is the state of neural network pruning? arXiv preprint arXiv:2004.10934 (2020)

  2. Blott, M., et al.: Evaluation of optimized CNNs on heterogeneous accelerators using a novel benchmarking approach. IEEE Trans. Comput. 70(10), 1654–1669 (2021)

    MATH  Google Scholar 

  3. Bochkovskiy, A., Wang, C., Liao, H.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  4. Bradski, G.: The OpenCV library. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  5. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave gaussian quantization. In: IEEE CVPR (2017)

    Google Scholar 

  6. david8862: keras-yolov3-model-set. https://github.com/david8862/keras-YOLOv3-model-set/tree/v1.3.0

  7. Eclipse: Eclipse paho mqtt c++ client library. https://github.com/eclipse/paho.mqtt.cpp

  8. Gemirter, C., Senturca, C., Baydere, S.: A comparative evaluation of AMQP, MQTT and HTTP protocols using real-time public smart city data. In: 6th International Conference on Computer Science and Engineering (UBMK) (2021)

    Google Scholar 

  9. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M., Keutzer, K.: A survey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630 (2021)

  10. Gog, I., Kalra, S., Schafhalter, P., Wright, M., Gonzalez, J., Stoica, I.: Pylot: a modular platform for exploring latency-accuracy tradeoffs in autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  11. Gündogan, C., Kietzmann, P., Lenders, M., Petersen, H., Schmidt, T., Wählisch, M.: NDN, CoAP, and MQTT: a comparative measurement study in the IoT. In: Proceedings of the 5th ACM Conference on Information-Centric Networking (ICN) (2018)

    Google Scholar 

  12. Hamerski, J.C., Domingues, A.R., Moraes, F.G., Amory, A.: Evaluating serialization for a publish-subscribe based middleware for mpsocs. In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2018). https://doi.org/10.1109/ICECS.2018.8618003

  13. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE CVPR (2017)

    Google Scholar 

  14. Intel: OpenVINO Repository. https://github.com/openvinotoolkit/openvino

  15. Jung, S., Hwang, S., Shin, H., Shim, D.: Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Rob. Autom. Lett. 3(3), 2539–2544 (2018)

    Article  Google Scholar 

  16. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: IEEE ICCV (2017)

    Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Lin, Z., Yih, M., Ota, J., Owens, J., Muyan-Özcelik, P.: Benchmarking deep learning frameworks and investigating FPGA deployment for traffic sign classification and detection. IEEE Trans. Intell. Veh. 4(3), 385–395 (2019)

    Article  Google Scholar 

  19. Liu, D., Kong, H., Luo, X., Liu, W., Subramaniam, R.: Bringing AI to edge: from deep learning’s perspective. Neurocomputing 485, 297–320 (2022)

    Article  Google Scholar 

  20. Mishra, B., Kertesz, A.: The use of MQTT in M2M and IoT systems: a survey. IEEE Access 8, 201071–201086 (2021)

    Article  Google Scholar 

  21. NVIDIA: TensorRT Repository. https://github.com/NVIDIA/TensorRT/

  22. Nvidia: Jetson agx xavier developer kit - user guide (2019). https://developer.download.nvidia.com/embedded/L4T/r32-3-1_Release_v1.0/jetson_agx_xavier_developer_kit_user_guide.pdf

  23. ONNX: Tensorflow backend for onnx. https://github.com/onnx/onnx-tensorflow/

  24. Redmon, J.: Darknet: Open source neural networks in c (2013–2016). http://pjreddie.com/darknet/

  25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR (2016)

    Google Scholar 

  26. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767

  27. Rungsuptaweekoon, K., Visoottiviseth, V., Takano, R.: Evaluating the power efficiency of deep learning inference on embedded gpu systems. In: International Conference on Information Technology (INCIT) (2017)

    Google Scholar 

  28. Stäcker, L., et al.: Deployment of deep neural networks for object detection on edge ai devices with runtime optimization. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2021)

    Google Scholar 

  29. Verucchi, M., et al.: A Systematic assessment of embedded neural networks for object detection. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 937–944 (2020). https://doi.org/10.1109/ETFA46521.2020.9212130

  30. Wang, J., Gu, S.: FPGA implementation of object detection accelerator based on Vitis-AI. In: 2021 11th International Conference on Information Science and Technology (ICIST), pp. 571–577 (2021)

    Google Scholar 

  31. Xilinx: Vitis AI Repository. https://github.com/Xilinx/Vitis-AI/

  32. Xilinx: Zcu104 board user guide (2018). https://www.xilinx.com/support/documentation/boards_and_kits/zcu104/ug1267-zcu104-eval-bd.pdf

  33. Xilinx: Dpuczdx8g for zynq ultrascale+ mpsocs (2021). https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf

  34. Xiong, Y., et al.: MobileDets: searching for object detection architectures for mobile accelerators. In: IEEE CVPR (2021)

    Google Scholar 

  35. Yokotani, T., Sasaki, Y.: Comparison with HTTP and MQTT on required network resources for IoT. In: International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (2016)

    Google Scholar 

  36. Yu, J., et al.: Real-time object detection towards high power efficiency. In: Design, Automation & Test in Europe Conference & Exhibition (DATE) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Teutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlosser, M., König, D., Teutsch, M. (2022). A Framework for Benchmarking Real-Time Embedded Object Detection. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics