Skip to main content

A Siamese Neural Network for Scalable Behavioral Biometrics Authentication

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13285))

Included in the following conference series:

  • 1113 Accesses

Abstract

The rise in popularity of web and mobile applications brings about a need of robust authentication systems. Behavioral Biometrics Authentication has emerged as a complementary risk-based authentication approach which aims at profiling users based on their interaction with computers/smartphones. In this work we propose a novel approach based on Siamese Neural Networks to perform a few-shot verification of user’s behavior. We develop our approach to authenticate either human-computer or human-smartphone interaction. For computer interaction, our approach learns from mouse and keyboard dynamics, while for smartphone interaction it learns from holding patterns and touch patterns. The proposed approach requires only one model to authenticate all the users of a system, as opposed to the one model per user paradigm. This is a key aspect with respect to the scalability of our approach. The proposed model exhibits a few-shot classification accuracy of up to 99.8% and 90.8% for mobile and web interactions, respectively. We also test our approach on a database that contains over 100K interactions collected in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A service where human workers perform a certain task following instructions defined by the task requester.

References

  1. Abuhamad, M., Abuhmed, T., Mohaisen, D., Nyang, D.H.: AUToSen: deep learning-based implicit continuous authentication using smartphone sensors. IEEE Internet of Things J. 7, 5008–5020 (2020)

    Article  Google Scholar 

  2. Acien, A., Monaco, J.V., Morales, A., Vera-Rodríguez, R., Fiérrez, J.: TypeNet: scaling up keystroke biometrics. CoRR abs/2004.03627 (2020). https://arxiv.org/abs/2004.03627

  3. Acien, A., Morales, A., Vera-Rodriguez, R., Fierrez, J., Tolosana, R.: Multilock: mobile active authentication based on multiple biometric and behavioral patterns. In: 1st International Workshop on Multimodal Understanding and Learning for Embodied Applications, pp. 53–59 (2019)

    Google Scholar 

  4. Ahmed, A.A.E., Traore, I.: A new biometric technology based on mouse dynamics. IEEE Trans. Dependable Secure Comput. 4(3), 165–179 (2007)

    Article  Google Scholar 

  5. Amini, S., Noroozi, V., Pande, A., Gupte, S., Yu, P.S., Kanich, C.: DeepAuth: a framework for continuous user re-authentication in mobile apps. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2027–2035 (2018)

    Google Scholar 

  6. Bailey, K.O., Okolica, J.S., Peterson, G.L.: User identification and authentication using multi-modal behavioral biometrics. Comput. Secur. 43, 77–89 (2014)

    Article  Google Scholar 

  7. Boenninghoff, B., Nickel, R.M., Zeiler, S., Kolossa, D.: Similarity learning for authorship verification in social media. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 2457–2461. IEEE (2019)

    Google Scholar 

  8. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace passwords: a framework for comparative evaluation of Web authentication schemes. Technical report. UCAM-CL-TR-817, University of Cambridge, Computer Laboratory (2012). https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf

  9. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  10. Centeno, M.P., Guan, Y., van Moorsel, A.: Mobile based continuous authentication using deep features. In: Proceedings of the 2nd International Workshop on Embedded and Mobile Deep Learning, pp. 19–24 (2018)

    Google Scholar 

  11. Cilia, D., Inguanez, F.: Multi-model authentication using keystroke dynamics for smartphones. In: 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), pp. 1–6. IEEE (2018)

    Google Scholar 

  12. Deb, D., Ross, A., Jain, A.K., Prakah-Asante, K.O., Prasad, K.V.: Actions speak louder than (pass)words: passive authentication of smartphone users via deep temporal features. CoRR abs/1901.05107 (2019). http://arxiv.org/abs/1901.05107

  13. Dey, S., Dutta, A., Toledo, J.I., Ghosh, S.K., Lladós, J., Pal, U.: SigNet: convolutional siamese network for writer independent offline signature verification. arXiv preprint arXiv:1707.02131 (2017)

  14. Fridman, L., et al.: Multi-modal decision fusion for continuous authentication. Comput. Electr. Eng. 41, 142–156 (2015)

    Article  Google Scholar 

  15. Giot, R., Rocha, A.: Siamese networks for static keystroke dynamics authentication. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2019)

    Google Scholar 

  16. Ehatisham-ul Haq, M., Azam, M.A., Naeem, U., Amin, Y., Loo, J.: Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing. J. Netw. Comput. Appl. 109, 24–35 (2018)

    Article  Google Scholar 

  17. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  18. Hindy, H., et al.: Leveraging Siamese networks for one-shot intrusion detection model. arXiv preprint arXiv:2006.15343 (2020)

  19. Hoang, T., Nguyen, T.D., Luong, C., Do, S., Choi, D.: Adaptive cross-device gait recognition using a mobile accelerometer. JIPS 9(2), 333 (2013)

    Google Scholar 

  20. Jagadeesan, H., Hsiao, M.S.: A novel approach to design of user re-authentication systems. In: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6. IEEE (2009)

    Google Scholar 

  21. Arif Khan, F., Kunhambu, S., Chakravarthy G, K.: Behavioral biometrics and machine learning to secure website logins. In: Thampi, S.M., Madria, S., Wang, G., Rawat, D.B., Alcaraz Calero, J.M. (eds.) SSCC 2018. CCIS, vol. 969, pp. 667–677. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5826-5_52

    Chapter  Google Scholar 

  22. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, Lille, vol. 2 (2015)

    Google Scholar 

  23. Lamiche, I., Bin, G., Jing, Y., Yu, Z., Hadid, A.: A continuous smartphone authentication method based on gait patterns and keystroke dynamics. J. Ambient. Intell. Humaniz. Comput. 10(11), 4417–4430 (2018). https://doi.org/10.1007/s12652-018-1123-6

    Article  Google Scholar 

  24. Li, Y., Hu, H., Zhou, G.: Using data augmentation in continuous authentication on smartphones. IEEE Internet Things J. 6(1), 628–640 (2018)

    Article  Google Scholar 

  25. Lin, H., Liu, J., Li, Q.: TDSD: a touch dynamic and sensor data based approach for continuous user authentication. In: PACIS, p. 294 (2018)

    Google Scholar 

  26. Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for image matching. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 378–383. IEEE (2016)

    Google Scholar 

  27. Neha, Chatterjee, K.: Continuous user authentication system: a risk analysis based approach. Wirel. Pers. Commun. 108(1), 281–295 (2019). https://doi.org/10.1007/s11277-019-06403-0

  28. Nishiuchi, N., Aoki, S.: Study on soft behavioural biometrics to predict consumer’s interest level using web access log. Int. J. Biometrics 11(3), 243–256 (2019). https://doi.org/10.1504/IJBM.2019.100838

    Article  Google Scholar 

  29. Patel, Y.: The state of play - traditional versus behavioural biometrics. Biometric Technol. Today 2019(2), 5–7 (2019). https://doi.org/10.1016/S0969-4765(19)30024-4

    Article  Google Scholar 

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Rauen, Z.I., Anjomshoa, F., Kantarci, B.: Gesture and sociability-based continuous authentication on smart mobile devices. In: Proceedings of the 16th ACM International Symposium on Mobility Management and Wireless Access, pp. 51–58 (2018)

    Google Scholar 

  32. Rocha, R., Carneiro, D., Costa, R., Analide, C.: Continuous authentication in mobile devices using behavioral biometrics. In: Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S. (eds.) ISAmI 2019. AISC, vol. 1006, pp. 191–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24097-4_23

    Chapter  Google Scholar 

  33. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  34. Shen, C., Yu, T., Yuan, S., Li, Y., Guan, X.: Performance analysis of motion-sensor behavior for user authentication on smartphones. Sensors 16(3), 345 (2016)

    Article  Google Scholar 

  35. Sitová, Z., et al.: HMOG: new behavioral biometric features for continuous authentication of smartphone users. IEEE Trans. Inf. Forensics Secur. 11(5), 877–892 (2015)

    Article  Google Scholar 

  36. Solano, J., Camacho, L., Correa, A., Deiro, C., Vargas, J., Ochoa, M.: Risk-based static authentication in web applications with behavioral biometrics and session context analytics. In: Zhou, J., et al. (eds.) ACNS 2019. LNCS, vol. 11605, pp. 3–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29729-9_1

    Chapter  Google Scholar 

  37. Solano, J., Tengana, L., Castelblanco, A., Rivera, E., Lopez, C., Ochoa, M.: A few-shot practical behavioral biometrics model for login authentication in web applications. In: NDSS Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb 2020) (2020)

    Google Scholar 

  38. Stanciu, V.D., Spolaor, R., Conti, M., Giuffrida, C.: On the effectiveness of sensor-enhanced keystroke dynamics against statistical attacks. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 105–112 (2016)

    Google Scholar 

  39. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  40. Traore, I., Woungang, I., Obaidat, M.S., Nakkabi, Y., Lai, I.: Combining mouse and keystroke dynamics biometrics for risk-based authentication in web environments. In: 2012 Fourth International Conference on Digital Home, pp. 138–145. IEEE (2012)

    Google Scholar 

  41. Triantafillou, E., Zemel, R., Urtasun, R.: Few-shot learning through an information retrieval lens. In: Advances in Neural Information Processing Systems, pp. 2255–2265 (2017)

    Google Scholar 

  42. Volaka, H.C., Alptekin, G., Basar, O.E., Isbilen, M., Incel, O.D.: Towards continuous authentication on mobile phones using deep learning models. Procedia Comput. Sci. 155, 177–184 (2019)

    Article  Google Scholar 

  43. Yampolskiy, R.V., Govindaraju, V.: Behavioural biometrics: a survey and classification. Int. J. Biometrics 1(1), 81–113 (2008). https://doi.org/10.1504/IJBM.2008.018665

    Article  Google Scholar 

  44. Zhang, C., Liu, W., Ma, H., Fu, H.: Siamese neural network based gait recognition for human identification. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2832–2836. IEEE (2016)

    Google Scholar 

  45. Zheng, N., Paloski, A., Wang, H.: An efficient user verification system via mouse movements. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 139–150. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solano, J., Rivera, E., Tengana, L., López, C., Flórez, J., Ochoa, M. (2022). A Siamese Neural Network for Scalable Behavioral Biometrics Authentication. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2022. Lecture Notes in Computer Science, vol 13285. Springer, Cham. https://doi.org/10.1007/978-3-031-16815-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16815-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16814-7

  • Online ISBN: 978-3-031-16815-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics