
 
 

Delft University of Technology

On the Effect of Clock Frequency on Voltage and Electromagnetic Fault Injection

Koffas, Stefanos; Vadnala, Praveen Kumar

DOI
10.1007/978-3-031-16815-4_8
Publication date
2022
Document Version
Final published version
Published in
Applied Cryptography and Network Security Workshops - ACNS 2022 Satellite Workshops, AIBlock,
AIHWS, AIoTS, CIMSS, Cloud S and P, SCI, SecMT, SiMLA, Proceedings

Citation (APA)
Koffas, S., & Vadnala, P. K. (2022). On the Effect of Clock Frequency on Voltage and Electromagnetic Fault
Injection. In J. Zhou, S. Chattopadhyay, S. Adepu, C. Alcaraz, L. Batina, E. Casalicchio, C. Jin, J. Lin, E.
Losiouk, S. Majumdar, W. Meng, S. Picek, Y. Zhauniarovich, J. Shao, C. Su, C. Wang, & S. Zonouz (Eds.),
Applied Cryptography and Network Security Workshops - ACNS 2022 Satellite Workshops, AIBlock,
AIHWS, AIoTS, CIMSS, Cloud S and P, SCI, SecMT, SiMLA, Proceedings (pp. 127-145). (Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 13285 ). Springer. https://doi.org/10.1007/978-3-031-16815-4_8
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-16815-4_8
https://doi.org/10.1007/978-3-031-16815-4_8


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



On the Effect of Clock Frequency
on Voltage and Electromagnetic Fault

Injection

Stefanos Koffas1(B) and Praveen Kumar Vadnala2

1 Delft University of Technology, Delft, The Netherlands
s.koffas@tudelft.nl

2 Riscure BV, Delft, The Netherlands

vadnala@riscure.com

Abstract. We investigate the influence of clock frequency on the suc-
cess rate of a fault injection attack. In particular, we examine the success
rate of voltage and electromagnetic fault attacks for varying clock fre-
quencies. Using three different tests that cover different components of
a System-on-Chip, we perform fault injection while its CPU operates at
different clock frequencies. Our results show that the attack’s success
rate increases with an increase in clock frequency for both voltage and
EM fault injection attacks. As the technology advances push the clock
frequency further, these results can help assess the impact of fault injec-
tion attacks more accurately and develop appropriate countermeasures
to address them.

Keywords: RISC-V · System-on-chip · Voltage and electromagnetic
fault injection

1 Introduction

Fault Injection (FI) attacks have been used to attack cryptographic implemen-
tations for over two decades. It is now well known that both symmetric and
asymmetric cryptosystems are vulnerable to Differential Fault Analysis (DFA)
attacks [7–9,15]. However, breaking cryptographic implementations is just one
of the many possibilities for FI attacks. They have been frequently used to break
the security of smart cards and embedded devices [10,25–27]. FI attacks have
been successfully used to break secure boot, e.g., bypassing the authentication
of the code stored in flash memory, allowing attackers to run their code on the
device. Further, FI has been used for privilege escalation or to extract firmware
from the device.

Previous Work. Boneh, DeMillo, and Lipton demonstrated how faults induced
in hardware could be exploited to recover the secret key used in RSA [9]. In this
attack, a fault is injected while the device performs an RSA operation, leading
to incorrect output. Given several incorrect outputs and the correct output,
recovering the secret key used with a DFA attack is possible. Similar attacks have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 127–145, 2022.
https://doi.org/10.1007/978-3-031-16815-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16815-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-16815-4_8


128 S. Koffas and P. K. Vadnala

been later proposed for other public, and symmetric-key algorithms [1,2,7,8,15].
A survey of these successful fault attacks can be found in [5].

Moreover, existing published results use FI to break the non-cryptographic
security mechanisms. In [26], Timmers, Spruyt, and Witteman showed that FI
could be used to load attacker-controlled data into the Program Counter (PC)
register in an ARM 32-bit platform, allowing an attacker to gain runtime control
of the device by setting the PC to an address where the attacker’s payload is
stored. In [20], the authors performed FI on the instruction cache of ARMv7-M
architectures and modified the control flow of a program. Cui and Housley used
FI to corrupt the data stored in DRAM, thereby breaking the secure boot of
an embedded device [11]. A laser FI attack has been successfully used to break
the secure boot of a smartphone in [27]. In [25], FI has been successfully used
to escalate the privileges in Linux from user mode to kernel mode. Recently, FI
has also been used to extract the firmware from several commercial devices [10].

Contributions. Unlike smart cards, many embedded systems in use today are
implemented using multi-core System-on-Chips (SoCs) that are complex and
host CPUs that run at hundreds of MHz to few GHz. Most of these SoCs can
operate at different frequencies, and they often provide an option to config-
ure their frequency externally or internally. Moreover, some SoCs start booting
directly from an external clock that is relatively slow and switch to PLL (Phase
Locked Loop) sometime during the boot flow. This switch leads to a natural
question: does the FI’s attack success rate depend on the operating frequency?

The success rate of an FI test is defined as the number of successful faults
divided by the number of total attempts. So, naturally, as the success rate
increases, the effort required to perform a successful attack decreases. Although
dependency between the EM pulse voltage and the clock frequency along with
success rate was briefly discussed in [18] within the context of FPGA, to the best
of our knowledge, no extensive study examined the relationship between the clock
frequency and the success rate of an FI attack. In this work, we address this gap
for Voltage FI (VFI) and ElectroMagnetic FI (EMFI) within the context of an
SoC. We use SiFive’s HiFive1 development board for our experiments, which
houses the FE310-G000 chip, the first commercially available RISC-V SoC.

Organization. The rest of the paper is organized as follows. We provide a brief
introduction to different FI attacks and fault models in Sect. 2. Next, we describe
the three different test applications used in our testing in Sect. 3. The hardware
and the software tools used for the experiments are listed in Sect. 4. The results
from our experiments for both VFI and EMFI on HiFive1 are presented in Sect. 5.
We provide possible reasons for the observed behaviour in Sect. 6. Finally, we
conclude the paper in Sect. 7.

2 Preliminaries

Fault injection attacks are a class of physical attacks that try to actively modify
the intended behavior of the device in order to bypass its security. Faults can



On the Effect of Clock Frequency 129

be injected into the targeted device through different means, e.g., varying the
supply voltage or the clock speed, or using electromagnetic emissions or laser
beams [4]. In this section, we describe the common techniques used to inject
faults. We also recall various fault models from the literature.

Clock Fault Injection. A fault is injected by tampering with the target’s clock
signal [3]. For example, the target is supplied with a clock signal higher than its
operating frequency for a short period reducing the length of a single clock cycle.
Thus, it may cause setup time constraint violations [28] changing the program’s
control flow, which could result in breaking a security mechanism.

Voltage Fault Injection. A fault is injected by changing the target’s supply
voltage [28]. This change is applied when the targeted operation is executed,
making it possible to induce the desired effect in the device. As shown in [28],
voltage fault injection causes setup time violations like the clock fault injection.

Electromagnetic Fault Injection. A fault is injected by applying a transient
or a harmonic EM pulse [6,12,17]. A fault injection probe consisting of a coil
generates such pulses after a high voltage pulse is applied to the coil, inducing
eddy currents into the chip. These eddy currents cause faulty behavior that could
be used to break a security mechanism.

Optical Fault Injection. A fault is injected into the target device with the help
of a light pulse [24]. The applied light pulse induces a photo-electric current in the
device, causing faults in the computations. The light pulse can be generated using
a low-cost camera flashlight, but often this is not precise. For higher precision,
a laser beam is used to induce the desired light pulse.

Fault Models. The behavior of a device can be affected in various ways due
to fault injection attacks. These attacks can influence both the CPU’s execution
unit and the static components that store data and instructions like the registers
and the caches [25]. In general, it is difficult to determine the exact reason behind
a successful fault injection attack. Therefore, we use high-level fault models
that describe the effect of faults on the device’s behavior on the instruction set
architecture level [26]. Commonly used fault models include:

– Instruction Manipulation: The fault modifies the instruction, leading to
unexpected behavior. For example, a bit flip in the opcode field of an instruc-
tion converts a subtraction operation into an addition.

– Instruction Skipping: This is a special case of instruction manipulation
that results in a modified instruction that has no impact on the device’s
behavior. This can happen, for example, when the operands of the modified
instruction have been changed to something that is not used later by the
program or when a branch instruction has been changed to a nop, i.e., no
operation.

– Memory Corruption: The fault affects the values loaded from a register
or memory, which can cause unexpected effects on the program execution.
This can happen when the data loaded to a register from the data cache



130 S. Koffas and P. K. Vadnala

is corrupted. Alternatively, when the data read from the main memory is
corrupted, the data or instruction cache stores the corrupted value.

3 Test Applications

In this section, we propose three test applications that aim to capture the effects
of faults on different SoC components. These tests are based on the characteri-
zation test presented in [26] and intend to cover the effect of faults on an SoC
more extensively. At a high level, a fault can modify the instructions being exe-
cuted or the data being processed through a single or multiple bit flips. Such
modifications can occur in any SoC component, like the CPU or the memory, or
during data exchange. We aim to cover different scenarios where a fault could
modify the data or instructions.

Our tests are designed to cover the effects on various SoC components. We
implemented them in assembly to fully control what is being executed on the
CPU and avoid any undesired effects caused by compiler optimizations. We show
these tests in Listing 1.1, Listing 1.2, and Listing 1.3 in an assembly-like pseudo-
code that can be easily translated into any Instruction Set Architecture (ISA).
In all these tests, we use two general-purpose registers named t0 and t1. Their
names come from the temporary registers defined in RISC-V but all ISAs have
such registers.

3.1 Register-Based Loop

In the register-based loop, we only use the CPU registers to implement a loop.
We use two counters: one that goes up and the other goes down. These counters
are initialized to 0 (t0 register) and n (t1 register), respectively. The test consists
of a loop that increments and decrements t0 and t1, respectively, in steps of 1,
until t1 becomes 0. The rest of the registers are initialized with a known fixed
value (e.g., 0xdeadbeef) to monitor if the fault modified the source or destination
registers in an instruction. The test uses only two registers to store the counters,
and hence the data cache will not be used. Additionally, as the code size is small,
it should most likely fit in the instruction cache.

A successful fault is identified by checking the value of the registers at the
end of the loop. In some cases, the registers t0 and t1 do not hold the values n
and zero due to the injected fault. Alternatively, the fault could also affect the
value in the unused registers.

1 # Push a known value to a l l the r e g i s t e r s
2 # N: the number o f r e g i s t e r s in the ISA
3 ( t2 , . . . , tN) ← 0 xdeadbeef
4 t0 ← 0
5 t1 ← n
6 r e g l o op :
7 t0 ← t0 + 1
8 t1 ← t1 - 1
9 i f t1 > 0 then goto r e g l oop

Listing 1.1. Register based test



On the Effect of Clock Frequency 131

3.2 Memory-Based Loop

The memory-based loop is similar to the register-based loop but the counters
are loaded/saved from/to the memory (using load and store instructions) in
every iteration. Again, the loop ends when t1 is 0 (Listing 1.2). After the first
load, a copy of the data is kept in the data cache, and hence faults would only
affect the data cache and its transfers inside the loop. The loop code should fit
in the instruction cache due to its size. We also initialize all the unused registers
to a fixed value to track any corruptions in their contents or verify whether a
different register was used in a loop iteration due to the fault. A successful fault
is determined by examining the registers and comparing their values with the
expected ones.

1 # Push a known value to a l l the r e g i s t e r s
2 # N: the number o f r e g i s t e r s in the ISA
3 ( t2 , . . . , tN) ← 0 xdeadbeef
4 t0 ← 0
5 s tack [ sp - 4 ] ← t0
6 t1 ← n
7 s tack [ sp - 8 ] ← t1
8 mem loop :
9 t0 ← s tack [ sp - 4 ]

10 t1 ← s tack [ sp - 8 ]
11 t0 ← t0 + 1
12 t1 ← t1 - 1
13 s tack [ sp - 4 ] ← t0
14 s tack [ sp - 8 ] ← t1
15 i f t1 > 0 then goto mem loop

Listing 1.2. Memory based test

3.3 Unrolled Loop

In this test, we implement a fully unrolled loop. We use one up-counter (t0)
initialized to 0, that is incremented n times through an unrolled loop. Similar
to the other two tests, we also initialize all the unused registers to a fixed value.

In general, this test can be used in two different ways according to the loop’s
number of increment instructions. First, if a small n is used, the program can fully
fit in the instruction cache, which results in no cache misses during the execution of
the test. As a result, only transfers between the instruction cache and the CPU are
affected. This way, it is possible to pinpoint the sensitivity of the instruction cache
and the corresponding bus to FI attacks. On the other hand, if a large n is used and
the program cannot fit in the instruction cache, there will be instruction cache misses
during the execution of the test, which results in loading the instructions from the
main memory. The CPU to main memory bus’s sensitivity to FI attacks could also be
determined in such cases.

1 # Push a known value to a l l the r e g i s t e r s
2 # N: the number o f r e g i s t e r s in the ISA
3 ( t1 , . . . , tN) ← 0 xdeadbeef
4 t0 ← 0
5 t0 ← t0 + 1
6 t0 ← t0 + 1
7 t0 ← t0 + 1
8 . . .
9 t0 ← t0 + 1

Listing 1.3. Unrolled loop



132 S. Koffas and P. K. Vadnala

A successful fault is detected when the value in t0 is not equal to n or when the
value in any of the unused registers is corrupted.

4 Setup

Performing automatic execution of FI attacks requires both hardware and software
tools. In this section, we describe the tools used for our experiments. We also briefly
discuss the characteristics of the target used for the experiments.

4.1 Target of Evaluation

Our target is the FE310-G000 (fabricated in TSMC CL018G 180 nm [22]) which is
included in the development board HiFive1. FE310-G000’s maximum supported fre-
quency is 320 MHz and the CPU requires 1.8 V or 3.3 V supply voltage to operate [21].
We did not decap the chip due to its thin package as was also described in [14]. The
tests presented in Sect. 3 are implemented as part of a user-defined program that runs
on bare-metal (without an operating system), as described in Subsect. 4.3.

4.2 Hardware Tools

During our experiments, various faults (also referred to as attempts in this paper) are
injected into the device in order to identify suitable parameters for success. For that
reason, a fully automated setup has been created using commercially available tools
from Riscure [19]. We used the following hardware tools for testing:

– Glitch Generator: An FPGA based workbench that can be programmed to inter-
act with embedded devices. The “brain” of this device consists of two finite state
machines (up to 255 states each), which are responsible for the correct generation
of every signal that is needed for our experiments. To handle inputs/outputs, the
device consists of 32 GPIO pins that can interact with the target. We use this
device to generate the glitch used for the fault injection. The Glitch Generator
consists of six analog voltage outputs, and it can also provide the input voltage for
small embedded devices.

– Glitch Amplifier: This analog device is used in conjunction with the Glitch
Generator. It is used to generate sharper and more accurate voltage glitches that
are essential in voltage fault injection attacks.

– EMFI Transient Probe: The Glitch Generator controls this device. It generates
an electromagnetic pulse lasting for 50 ns after the Glitch Generator triggers it.
The probe is made of a copper winding around a ferrite core, and its tip is a flat
circle with a diameter of 1.5 mm.

4.3 Software Tools

We implemented a simple bare-metal application in C and RISC-V assembly that runs
on the FE310-G000 chip. This application accepts messages from the PC through the
UART interface and runs one of the three characterization tests described in Sect. 3.
The message from the UART determines which test should run every time. Right before
the test starts, a GPIO pin is set to high, and the same pin is set to low when the test



On the Effect of Clock Frequency 133

Table 1. The list of commands used to communicate with the board

Command Functionality

“#1” Run the register based loop (test 1)

“#2” Run the memory based loop (test 2)

“#3” Run the unrolled loop (test 3)

“#4” Enable the PLL at 320 MHz (fast EMFI configuration)

“#5” Disable the PLL and use 16 MHz (slow configuration)

“#6” Enable the PLL at 90 MHz (medium configuration)

“#7” Enable the PLL at 240 MHz (fast VFI configuration)

(a) EMFI Setup (b) VFI setup

Fig. 1. Setups used for the experiments.

ends. This pin is used in the synchronization between the Glitch Generator and the
target device. The application can alter the chip’s operating frequency dynamically
by enabling or disabling the PLL. We used three clock configurations to investigate
the effect of different operating frequencies on both VFI’s and EMFI’s attack success
rate. The first configuration operates at 16 MHz (slow configuration) and does not use
the PLL clock generator. However, the medium and the fast configurations use the
PLL. The medium configuration operates at 90 MHz. The fast configuration operates
at 320 MHz and 240 MHz for the EMFI and the VFI, respectively. We had to operate
the device slightly slower than the maximum allowed frequency for VFI due to the
instabilities introduced after the board was modified (see Subsect. 4.5). In Table 1, we
show a summary of the protocol used between the PC and the board.

4.4 EMFI Setup

Our experimental setup used for the EMFI is shown in Fig. 1a. The target board is
powered using an external power supply. A Python script that runs in the PC controls
the target through the UART interface and configures the state machine inside the
Glitch Generator through a user-friendly API. This state machine consists of one state
that produces the glitch when the trigger is generated from the target device. We



134 S. Koffas and P. K. Vadnala

(a) HiFive1 CPU schematic [23]
(b) Power cuts in HiFive1 for ef-
fective voltage fault injection

Fig. 2. HiFive1 CPU schematic and applied modifications.

program the target with our test application as we described in Subsect. 4.3. A jumper
wire drives the trigger signal from the target’s GPIO to the Glitch Generator. The
Glitch Generator produces another trigger that is driven to the EMFI Transient Probe.
The EMFI Transient Probe generates an EM pulse, which may or may not affect the
target. The Transient Probe is attached to a CNC (Computer Numerical Control)
machine that acts as a movable XYZ stage helping in accurate positioning above the
target device. After the application finishes its execution, the device replies back to
the PC, and the results are saved to an SQLite database. If no reply has been received
after a specific amount of time, the target is reset by the Glitch Generator using the
target’s reset pin. We used an FTDI chip for the communication between the PC and
the target.

4.5 VFI Setup

In Fig. 2a, the schematic that describes the circuit around the FE310-G000 chip in the
HiFive1 development board is shown [23]. We see that pins 6, 30, and 46 are used for the
CPU’s power supply. To create a stable power supply line that is not affected by small
variations in the input voltage, some filter capacitors are connected directly to these
pins. To increase the effectiveness of the VFI, the glitch should be applied directly to
the CPU without having to pass through the filter circuit. Therefore, we modified the
HiFive1 board used for our experiments. The applied power cuts are shown in Fig. 2b.
In particular, pins 6, 30, and 46 are cut from the rest of the circuit and soldered to
an external pin so that it is possible to connect them to a 1.8 V power supply directly
(VDD Core in the Fig. 2b).

The experimental setup we used for VFI is shown in Fig. 1b. For this experiment,
the development board was powered from an external power supply at 5 V. The power
cuts isolated the SoC from the rest of the board, and hence we powered it separately. In
particular, we connected the Glitch Amplifier directly to the external pin that powers it.
When there is no glitch, the output of the Glitch Amplifier is set at 1.8 V, as suggested
in [21]. We verified that the chip correctly operated in this setup even though the filter
capacitors have been removed. Like the EMFI, the target generates a trigger when the
application starts. The trigger is then driven to the Glitch Generator. Next, the Glitch
Generator produces the glitch, which is fed to the Glitch Amplifier. The glitch drops
the Vin to a random value smaller than 1.8 V (from 1.0 V to 1.6 V) for a short time.



On the Effect of Clock Frequency 135

We chose a broad range of values for the glitch to investigate the chip’s behavior under
various circumstances. When we need to perform an attack, we can narrow this range
and use values that yield a high probability of a successful attack. A Python script
controlled this process, and an FTDI chip was used for the communication between
the PC and the target.

4.6 Results Classification

The output from a fault injection attempt is categorized as follows:

– Expected: The test has completed its execution and the expected results (e.g., t0
= n and t1 = 0) were sent back to the PC.

– Crash/Mute: The impact of the glitch was strong, and the target crashed, or
there was no reply from the target before the timeout expired. In this case, the
glitch either affects the execution path and the application cannot continue or
causes the target to reset.

– Successful: The counter values (t0 and t1) returned to the PC were different
from the expected (t0 �= n or t1 �= 0). Therefore, the injected fault produced an
undesirable effect on the program execution without causing a crash.

Note that the success rate of an experiment is defined as the number of successful
attempts divided by the total number of attempts.

5 Experimental Results

To investigate how clock frequency affects FI success rate, we performed VFI and
EMFI experiments while the CPU was clocked at different frequencies. In this section,
we present the results from these experiments.

Parameter Space. The glitch applied in every fault injection attempt is fully defined
through a set of configurable parameters. These parameters form the parameter space
for the experiment, and they are different for every type of FI attack.

5.1 EMFI

The effectiveness of the EMFI depends on the location of the probe. Thus, we need
to identify the location that gives the maximum success rate. For that reason, we
performed a scan over the 6 × 6 mm chip’s package [21] in a two-dimensional grid of
points. On every point in the grid, we performed multiple FI attempts for statistical
analysis. In general, the grid’s density (distance between different points) depends on
the size of the chip and its package and the transient probe tip’s area. When the probe
tip is small, a dense grid can be used. On the other hand, when the probe tip is large,
a sparse grid should be used. If the grid remains dense even with a large tip, every
EMFI experiment can affect multiple points in the grid, introducing redundancy in
the results. We used an 8 × 8 grid of 64 points for our scan, which resulted in a step
of 0.75 mm. The diameter of our probe tip is 1.5 mm, and such a step is reasonable
to avoid interference between different grid points. The grid’s origin (X = 0, Y = 0)
corresponds to the lowest left corner of the chip’s resin package (see FE310-G000 pinout
in [21]).

The parameter space for the EMFI consists of the following:



136 S. Koffas and P. K. Vadnala

– Glitch power: The EM pulse’s amplitude as a percentage of the Transient Probe’s
maximum supported power. The maximum supported power corresponds to a 470V
pulse. We saw that values above 80% resulted in many resets and below 40% seemed
ineffective. For that reason, we used values between 40% and 80% of the maximum
power.

– Glitch delay: The time between the trigger and the glitch. This should not be
larger than the whole duration of the test that runs on the CPU. There was no
need for exact timing in our experiments as they were loops and our aim was to
draw a sensitivity map. Thus, the delay used was a random value between the 35%
and 65% of each test’s execution time. As expected, the exact ranges are different
for every test and every clock frequency.

– X: The X coordinate (in micrometers) of the grid point.
– Y: The Y coordinate (in micrometers) of the grid point.

We scanned the whole chip package in this experiment. At each point, we performed
a number of attempts with varying glitch delay and glitch power, both of which were
selected randomly from the above predefined ranges. We set n equal to 10000 (0x2710).
The results of this experiment are summarized in Fig. 3, Fig. 4, and Fig. 5. In these
graphs, the x and y axes show the X and Y co-ordinates of the grid point, respectively.
The green color represents expected results, the yellow color crashes/mutes, and the
red successful results (see Subsect. 4.6). We add a small random value (0–400 µm) to
each experiment’s X and Y coordinates so that they are not plotted on top of each
other.

We see from Fig. 3 and Fig. 4 that for the slow (16 MHz) and the medium (90 MHz)
clock configurations, successful glitches occurred only in the unrolled loop (List-
ing 1.3). These glitches occurred around the pins that communicate with the SPI
flash memory (see F310-G000 pinout in [21]). The unrolled loop (Listing 1.3) con-
sists of 10000 additions, and it requires an instruction cache of 10000 instructions ∗
4 bytes per instruction = 40000 ≈ 39 KiB. However, FE310-G000 has only a 16 KiB
instruction cache. Thus, our faults were most likely affecting the instruction transfers
from the flash. On the other hand, the code perfectly fits in the instruction cache
when the number of loop iterations is small, i.e., 300. In this case, no successful glitch
appeared around the region where we observed successful glitches previously. After the
first iteration of the loop, the code is copied into the instruction cache, and there is
no more interaction with the SPI flash memory. We saw no successful glitches in that
case (slow and medium clock configurations), and we concluded that transfers from the
instruction cache to the CPU were robust in these experiments.

In Table 2, we summarize some of the observed successful attempts. For all the suc-
cessful attempts in the unrolled loop test, the returned value is less than the expected
10000 (0x2710). If the returned counter value is close to 0x2710, it is safe to conclude
that some add instructions were skipped due to the fault. This happened when t0 is
0x2700, 0x2708, and 0x270f for 16 MHz, 90 MHz, and 320 MHz, respectively. In the
remaining cases (i.e., 0x256e, 0x26c2, 0x2660), there is a significant difference between
the returned and the expected values, so we cannot assume that only a few instruc-
tions were skipped. Even though the glitch lasts for 0.8, 4.5, and 16 cycles for the slow,
medium, and fast clock configurations, the returned values differ by 418, 88, and 176
from the expected value. In [14], it was verified that an EMFI attack could affect mul-
tiple instructions at once. However, the probability of this effect dropped significantly
for more than six instructions. Thus, in all these cases, some instructions were altered
completely. Such alterations require multiple bit-flips for each altered instruction that



On the Effect of Clock Frequency 137

Fig. 3. EMFI results of all three tests at 16 MHz (PLL bypassed).

Fig. 4. EMFI results of all three tests at 90 MHz (PLL enabled).

is not aligned with the state-of-the-art fault models like the sampling [18] or the charge-
based [16]. Additionally, the successful attempts in this area were not increased as the
operating frequency increased, which contradicts the charge-based fault model [16].
We concluded that this behavior was possible due to the retrieval of instructions from
the external SPI flash. Therefore, these errors were not of particular interest for this
work because the external SPI flash is unprotected in this board, and an attacker could
directly attack it.

The other two tests have successful faults only when the chip operates at 320 MHz,
verifying the charge-based fault model [16]. In particular, we conclude that the branch
instruction can be skipped in the register-based test, as one of the results was (t0, t1)
= (7190, 2810) = (0x1c16, 0xafa). In that case, everything was run as expected until
the branch instruction because t0 + t1 = 10000. Additionally, in two cases a result
larger than 10000 was saved in t0 (0x2e20 and 0x29ef), but the loop exited normally



138 S. Koffas and P. K. Vadnala

Fig. 5. EMFI results of all three tests at 320 MHz (PLL enabled).

(i.e., t1 = 0). This indicates that the immediate values of the additions can be altered
(instruction manipulation) because the significant difference from 10000 cannot be
explained by a few instruction skips even if our glitch lasts for 16 clock cycles.

For the memory-based loop, we observed all possible faults when the chip operated
at 320 MHz. In the first case ((t0, t1) = (0x270f, 0x0)), one addition was skipped.
In the second case ((t0, t1) = (0x62f, 0x20e1)), the branch instruction was skipped
because t0 + t1 = 0x2710 and t1 �= 0. The third case ((t0, t1) = (0x31fe, 0)) shows
that the constant added or subtracted has been manipulated and changed to a com-
pletely different value. Furthermore, memory corruption can also be seen when (t0,
t1) = (0xdeadde040, 0). In this case, during the loop’s execution, the contents of a
register with the value 0xdeadbeef were saved in the stack. This value was retrieved in
the next loop iteration. Then, the execution of the loop continued normally for 8529
(0xdeade040 - 0xdeadbeef) iterations until t1 was set to zero. From Fig. 5, we infer that
it is easier to induce successful faults when the target operates at the highest possible
frequency. Among the three tests, the memory-based loop (Listing 1.2) has produced
a higher percentage of successful faults because memory operations (i.e., loads and
stores) are highly vulnerable to faults. Additionally, we practically verified that each
program behaves differently under the same EMFI attacks highlighting the need for a
profiling phase before targeting an application. Such a profiling phase could define the
susceptibility of different assembly instructions to EMFI.

5.2 VFI

For an effective Voltage fault injection, we have removed the chip’s filter capacitors
(see Subsect. 4.5). The CPU was powered directly from the Glitch Generator. Its
supply voltage should be 1.8 V (±10%) to function normally. For the glitch, the input
voltage was dropped for a small amount of time, different for every clock configuration.

The parameter space for the VFI consists of the following:

– glitch voltage: The voltage provided to the target during the glitch. This voltage
takes values from 1 V to 1.6 V.



On the Effect of Clock Frequency 139

Table 2. Output from some of the successful faults in EMFI

Frequency Test t0 t1 Comment

16MHz Register based loop – – –

Memory based loop – – –

Unrolled loop 0x256e – Instruction manipulation (add)

0x2700 – Instruction skipping (add)

90MHz Register based loop – – –

Memory based loop – – –

Unrolled loop 0x26c2 – Instruction manipulation

0x2708 – Instruction skipping (add)

320MHz Register based loop 0x1c16 0xafa Instruction skipping (branch)

0x2e20 0x0 Instruction manipulation (add)

0x29ef 0x0 Instruction manipulation (add)

Memory based loop 0x270f 0x0 Instruction skipping (add)

0x62f 0x20e1 Instruction skipping (branch)

0x31fe 0x0 Instruction manipulation (add)

0xdeade040 0x0 Memory corruption

Unrolled loop 0x2660 – Instruction manipulation

0x270f – Instruction skipping (add)

– glitch length: The amount of time that the glitch (voltage drop) is applied to the
target. In our experiments, this takes up to a small number of clock cycles.

– glitch delay: The amount of time between the trigger and the glitch. It should
be smaller than the total execution time of the test that runs on the CPU. Similar
to the EMFI experiments, the delay used was a random value from 35% to 65% of
the test’s execution time.

In our experiments, we varied all three parameters for each attempt. The values for
these parameters were chosen randomly from the allowed ranges. Similar to the EMFI,
we chose n equal to 10000 (0x2710). We show the results from the VFI experiment
in Figs. 6, 7 and 8 for the slow, medium, and fast clock, respectively. The X-axis shows
the glitch voltage in volts and the Y-axis shows the glitch length in nanoseconds. Here,
the expected results, crashes/mutes, and successful results are marked in green, yellow,
and red, respectively (Subsect. 4.6). The highest frequency that the application could
run normally, when no glitch is applied, is 240 MHz due to the instabilities that we
mentioned in Subsect. 4.5.

Our experiments show that the largest number of successful glitches appear in
the fast clock configuration (240 MHz), and the smallest number of successful glitches
appear when the circuit operates at 16 MHz. In [28], it was shown that VFI increases
signal propagation delays creating timing constraint violations. Such violations become
easier when the circuit operates in a higher clock frequency due to the decreased clock
period.

In Table 3, we show some of the observed successful attempts. Their classification
is based on the analysis we presented in Subsect. 4.6. When the clock operated at
16 MHz, we see that the branch instruction can be skipped in both the register-based
loop and the memory-based loop. Here, we got (t0, t1) = (0x1a5, 0x256b) for the



140 S. Koffas and P. K. Vadnala

Fig. 6. VFI results of all three tests at 16 MHz (PLL bypassed).

Fig. 7. VFI results of all three tests at 90 MHz (PLL enabled).

register based loop and (t0, t1) = (0x1182, 0x158e) and (t0, t1) = (0x1adb, 0x1adc)
for the memory-based loop. In the second case for the memory-based loop, t0 + t1 �=
0x2710, meaning that apart from the branch skipping, one more operation (add/sub)
was also manipulated. Instruction manipulation was possible in both the register-based
loop ((t0, t1) = (0x25b6, 0)) and the unrolled loop (t0 = 0x26e0). Furthermore, the
add instruction was also successfully skipped both in the memory-based loop ((t0, t1)
= (0x270f, 0)) and in the unrolled loop (t0 = 0x270f).

Similarly, when the clock operated at 90 MHz various faults have been observed.
The branch instruction was successfully skipped for both the register-based loop ((t0,
t1) = (0xeb2, 0x185e)), and the memory-based loop ((t0, t1) = (0xc37, 0x19d9), (t0,
t1) = (0x608, 0x2109), (t0, t1) = (0xa3d, 0xdeadbeee)). Apart from branch skipping,
we also observed memory corruption for the memory-based loop ((t0, t1) = (0xa3d,
0xdeadbee)). Here, after the wrong value was loaded in t1, the subtraction was per-



On the Effect of Clock Frequency 141

Fig. 8. VFI results of all three tests at 240 MHz (PLL enabled).

formed and then the branch was skipped. In one case, both the sub and the branch
instructions have been skipped ((t0, t1) = (0x608, 0x2109)) because the sum is 0x2711
and t0 �= 0. The rest of the experiments (register-based: (t0, t1) = (0x2700, 0), memory-
based: (t0, t1) = (0x270e, 0), unrolled: t0 = 0x2f0f, t0 = 0x2711) indicate some kind
of instruction manipulation in the constants that were added or subtracted.

When the clock operated at 240 MHz, similar results have been observed. In this fre-
quency, there were multiple cases of branch skipping (register-based: (t0, t1) = (0xb85,
0xdeadbeed), (t0, t1) = (0x5f0, 0x2120), memory-based: (0xada, 0x1c36), (t0, t1) =
(0xcaa, 0xdeadbeee)). There were also multiple examples of memory corruption for
both the register-based loop ((t0, t1) = (0xb85, 0xdeadbeed)) and the memory-based
loop ((t0, t1) = (0xdeadce5f, 0), (t0, t1) = (0xcaa, 0xdeadbeee)). For one of these
cases (memory-based: (t0, t1) = (0xdeadce5f, 0)), the wrong value was loaded to t0
and the loop continued normally for 0xdeadce5f - 0xdeadbeef = 0xf70 iterations before
it stopped. In the other two cases, the predefined value, i.e., 0xdeadbeef was loaded
to t1, and the sub instruction decreased t1 by 1 (normal execution) or 2 (instruction
manipulation), and the branch instruction was skipped in the same loop iteration. In
one case for the register-based loop, we got (t0, t1) = (0x2711, 0). This happened
either because one addition was manipulated and a 2 was added instead of 1, or one
subtraction was skipped and thus, the loop was executed for 1 more iteration. The
rest of the experiments are either instruction manipulations (memory-based: (t0, t1)
= (0x1c0f, 0), unrolled: t0 = 0x2720, t0 = 0x181c) or addition skipping (unrolled: t0
= 0x270f).

6 Discussion

In this section, we present possible explanations for the observed results. The observed
results are compatible with earlier analyses of the effects of FI on digital integrated
circuits. VFI causes timing constraint violations [28], which in turn cause computation
faults. The timing constraints essentially dictate that the time taken by a circuit to
process data must be lower than the clock period of the target for it to function



142 S. Koffas and P. K. Vadnala

Table 3. Output from some of the successful faults in VFI

Frequency Test t0 t1 Comment

16MHz Register based loop 0x1a5 0x256b Instruction skipping (branch)

0x25b6 0x0 Instruction manipulation (add)

Memory based loop 0x1182 0x158e Instruction skipping (branch)

0x270f 0x0 Instruction skipping (add)

0x1adb 0x1adc Instruction manipulation (add) + instruction

skipping (branch)

Unrolled loop 0x270f – Instruction skipping (add)

0x26e0 – Instruction manipulation (add) or instruction

skipping (add)

90MHz Register based loop 0x2700 0x0 Instruction manipulation (add)

0xeb2 0x185e Instruction skipping (branch)

0x4b38 0x0 Instruction manipulation (add)

Memory based loop 0x270e 0x0 Instruction skipping (add) or instruction

manipulation (sub or add)

0x608 0x2109 Instruction skipping (sub + branch)

0xa3d 0xdeadbeee Memory corruption + instruction skipping

(branch)

0xc37 0x19d9 Instruction skipping (branch)

Unrolled loop 0x2f0f – Instruction manipulation (add)

0x2711 – Instruction manipulation (add)

240MHz Register based loop 0x2711 0x0 Instruction manipulation (add) or instruction

skipping (sub)

0xb85 0xdeadbeed Memory corruption + instruction skipping

(branch)

0x5f0 0x2120 Instruction skipping (branch)

Memory based loop 0x1c0f 0x0 Instruction manipulation (add or sub)

0xada 0x1c36 Instruction skipping (branch)

0xdeadce5f 0x0 Memory corruption

0xcaa 0xdeadbeee Memory corruption + instruction skipping

(branch)

Unrolled loop 0x2720 – Instruction manipulation (add)

0x181c – Instruction manipulation (add) or instruction

skipping (add)

0x270f – Instruction skipping (add)

correctly. So, by increasing the data processing time using FI, it is possible to violate
the above constraint and induce faults in the computation. As the operating frequency
of the target increases, the clock period decreases. Hence, it is relatively easier to violate
the setup time constraint, thereby increasing the success rate of VFI.

In EMFI, we did not see only timing faults, but we also observed bit sets, resets, and
flips, meaning that our experiments are aligned with the charge-based fault model [14]
instead of the sampling fault model [18]. The sampling fault model [18] states that
the susceptibility windows of the DFFs are independent of the operating frequency,
but the distance of these windows decreases as the clock period gets smaller [13]. As
a result, one could claim that a glitch injected randomly during the execution of a
program has a higher probability of causing a successful fault when the chip operates
at a high frequency. However, the fact that we were able to successfully inject faults
(not related to the SPI flash) only when the chip operated at 320 MHz suggests that
the charge-based fault model is more accurate in this case.



On the Effect of Clock Frequency 143

In theory, the same success rate can be achieved when the target operates at a lower
frequency, e.g., by inducing more powerful voltage glitches or EM pulses. However,
the power of glitches cannot arbitrarily be increased in practice without causing the
target to reset. This behavior was also observed in our experiments: when the target
was running at 240 MHz (VFI), we could get many successful faults, where glitch
duration was less than 800 ns (see Fig. 8). However, we needed to increase the glitch
duration for the slower clock speeds, i.e., 2000 ns and 12000 ns for 90 MHz and 16 MHz
respectively (see Fig. 7 and Fig. 6). Such longer glitches inevitably make the target
dysfunctional, leading to more resets, as seen from these results. To conclude, when
the target operating frequency is low, the success rate decreases due to more resets
caused by the increased glitch power. This might also explain the higher success rate
when the operating frequency is higher.

7 Conclusion

Many embedded systems in use today are implemented using multi-core SoCs that are
complex and host CPUs that run at hundreds of MHz to few GHz. The security of
these devices faces different challenges compared to other simple devices like smart
cards. In this paper, we investigated the effect of clock frequency on the success rate
of VFI and EMFI on such SoCs. To determine the effect of faults more holistically,
we developed three test applications that target different components of the SoC. We
performed both VFI and EMFI on a RISC-V-based SoC while it was executing our
tests. The experimental results showed that the probability of success for fault injection
attacks increases as the clock frequency increases. We saw this behavior in both VFI
and EMFI. Finally, we provided theoretical justification for the observed results.

References

1. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Chris-
tianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028165

2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 20

3. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 105–114. IEEE (2011)

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

5. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

6. Bayon, P., et al.: Contactless electromagnetic active attack on ring oscillator based
true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE
2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29912-4 12

https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/978-3-642-29912-4_12
https://doi.org/10.1007/978-3-642-29912-4_12


144 S. Koffas and P. K. Vadnala

7. Bayon, P., et al.: Contactless electromagnetic active attack on ring oscillator based
true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE
2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29912-4 12

8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

10. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: Optimizing voltage
fault injection attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 199–
224 (2019)

11. Cui, A., Housley, R.: BADFET: defeating modern secure boot using second-order
pulsed electromagnetic fault injection. In: 11th USENIX Workshop on Offensive
Technologies (WOOT 17) (2017)

12. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 7–15. IEEE
(2012)

13. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic fault injection : How faults
occur. In: 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 9–16 (2019). https://doi.org/10.1109/FDTC.2019.00010

14. Elmohr, M.A., Liao, H., Gebotys, C.H.: EM fault injection on ARM and RISC-V.
In: 2020 21st International Symposium on Quality Electronic Design (ISQED), pp.
206–212 (2020). https://doi.org/10.1109/ISQED48828.2020.9137051

15. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506447 4

16. Liao, H., Gebotys, C.: Methodology for EM fault injection: charge-based fault
model. In: 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 256–259 (2019). https://doi.org/10.23919/DATE.2019.8715150

17. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE
(2013)

18. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.-M., Maurine, P.: Evidence
of a larger EM-induced fault model. In: Joye, M., Moradi, A. (eds.) CARDIS 2014.
LNCS, vol. 8968, pp. 245–259. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16763-3 15

19. Riscure. Inspector fault injection (2020). https://getquote.riscure.com/en/
inspector-fault-injection.html. Accessed 19 Aug 2022

20. Riviere, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High preci-
sion fault injections on the instruction cache of ARMv7-M architectures. In: 2015
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pp. 62–67. IEEE (2015)

21. SiFive. FE310-G000 Datasheet (2017). https://sifive.cdn.prismic.io/sifive
%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc fe310-g000-ds.pdf. Accessed 19 Aug
2022

https://doi.org/10.1007/978-3-642-29912-4_12
https://doi.org/10.1007/978-3-642-29912-4_12
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1109/FDTC.2019.00010
https://doi.org/10.1109/ISQED48828.2020.9137051
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4
https://doi.org/10.23919/DATE.2019.8715150
https://doi.org/10.1007/978-3-319-16763-3_15
https://doi.org/10.1007/978-3-319-16763-3_15
https://getquote.riscure.com/en/inspector-fault-injection.html
https://getquote.riscure.com/en/inspector-fault-injection.html
https://sifive.cdn.prismic.io/sifive%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
https://sifive.cdn.prismic.io/sifive%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf


On the Effect of Clock Frequency 145

22. SiFive. FE310-G000 Manual (2019). https://static.dev.sifive.com/FE310-G000.
pdf. Accessed 19 Aug 2022

23. SiFive. HiFive1 Schematics (2016). https://sifive.cdn.prismic.io/sifive
%2F080cdef9-4631-4c9b-b8f5-7937fbdec8a4 hifive1-a01-schematics.pdf. Accessed
19 Aug 2022

24. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

25. Timmers, N., Mune, C.: Escalating privileges in linux using voltage fault injection.
In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pp. 1–8 (2017)

26. Timmers, N., Spruyt, A., Witteman, M.: Controlling pc on ARM using fault
injection. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 25–35 (2016)

27. Vasselle, A., Thiebeauld, H., Maouhoub, Q., Morisset, A., Ermeneux, S.: Laser-
induced fault injection on smartphone bypassing the secure boot. IEEE Trans.
Comput. 69, 1449–1459 (2018)

28. Zussa, L., Dutertre, J.-M., Clediere, J., Tria, A.: Power supply glitch induced faults
on FPGA: an in-depth analysis of the injection mechanism. In: 2013 IEEE 19th
International On-Line Testing Symposium (IOLTS), pp. 110–115. IEEE (2013)

https://static.dev.sifive.com/FE310-G000.pdf
https://static.dev.sifive.com/FE310-G000.pdf
https://sifive.cdn.prismic.io/sifive%2F080cdef9-4631-4c9b-b8f5-7937fbdec8a4_hifive1-a01-schematics.pdf
https://sifive.cdn.prismic.io/sifive%2F080cdef9-4631-4c9b-b8f5-7937fbdec8a4_hifive1-a01-schematics.pdf
https://doi.org/10.1007/3-540-36400-5_2

	On the Effect of Clock Frequency on Voltage and Electromagnetic Fault Injection
	1 Introduction
	2 Preliminaries
	3 Test Applications
	3.1 Register-Based Loop
	3.2 Memory-Based Loop
	3.3 Unrolled Loop

	4 Setup
	4.1 Target of Evaluation
	4.2 Hardware Tools
	4.3 Software Tools
	4.4 EMFI Setup
	4.5 VFI Setup
	4.6 Results Classification

	5 Experimental Results
	5.1 EMFI
	5.2 VFI

	6 Discussion
	7 Conclusion
	References


