Skip to main content

A First Approach in Using Super-Steep-Subthreshold-Slope Field-Effect Transistors in Ultra-Low Power Analog Design

  • Conference paper
  • First Online:
VLSI-SoC: Technology Advancement on SoC Design (VLSI-SoC 2021)

Abstract

The benefits of steep-Subthreshold Swing (SS) devices, though plentiful at the device-level, have yet to be fully exploited at the circuit-level. This is evident from a look at the Three-Independent-Gate Field-Effect Transistor (TIGFET), a device renowned for its ability for polarity reconfiguration. At the same time, its demonstrated dynamic control of the subthreshold slope beyond the thermal limit has only been studied at the device-level. This latter benefit is referred to as Super-Steep Subthreshold Slope (S4) operation and can lead to unprecedented gain, which is ideal for use in an amplifier circuit. In this book chapter, we investigate the impact of S4 operations when designing differential-amplifier circuits while using TIGFET technology. We demonstrate the benefits of our implementation both from a theoretical standpoint and through circuit-level analyses. More specifically, we show that the TIGFET -based amplifier gain is \(95.5{\times }\) better, and that the gain-bandwidth product is improved by \(13.8{\times }\), compared to an equivalent MOSFET-based design at the 90 nm node. Besides, we show that at equivalent gains, the TIGFET-based amplifier decreases the area and power by \(22.8{\times }\) and \(7.2{\times }\), respectively, against its MOSFET counterpart. Further investigations prove that TIGFETs could be used in bio-sensing application where noise and power consumption are crucial. We have demonstrated that the use of TIGFETs could improve the thermal noise of low-power, Low-Noise Amplifiers (LNA) by 83% and the noise efficiency factor (NEF) by 58%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Natarajan, S., et al.: A 14 nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 \(\upmu \text{m}^2\) SRAM cell size. In: IEEE IEDM, pp. 3.7.1–3.7.3 (2014)

    Google Scholar 

  2. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. (2006)

    Google Scholar 

  3. Datta, S., et al.: Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)

    Article  Google Scholar 

  4. Kam, H., et al.: A new Nano-electromechanical Field Effect Transistor (NEMFET) design for low-power electronics. In: IEEE IEDM, pp. 463–466 (2005)

    Google Scholar 

  5. Lu, Z., et al.: Realizing super-steep subthreshold slope with conventional FDSOI CMOS at low-bias voltages. In: IEEE IEDM, pp. 16.6.1–16.6.3 (2010)

    Google Scholar 

  6. Zhang, J., et al.: Configurable circuits featuring dual-threshold-voltage design with three-independent-gate silicon nanowire FETs. IEEE TCAS 61(10), 2851–2861 (2014)

    Google Scholar 

  7. Giacomin, E., et al.: Low-power multiplexer designs using three-independent-gate field effect transistors. In: IEEE/ACM NanoArch, Newport, RI, USA, 25–26 July 2017 (2017)

    Google Scholar 

  8. Zhang, J., et al.: A Schottky-barrier silicon FinFET with 6.0 mV/dec subthreshold slope over 5 decades of current. In: IEEE IEDM, pp. 13.4.1–13.4.4 (2014)

    Google Scholar 

  9. Tsai, T.-H., et al.: Low-power analog integrated circuits for wireless ECG acquisition systems. IEEE Trans. Inf. Technol. Biomed. 16(5), 907–917 (2012)

    Article  Google Scholar 

  10. Harpe, P., et al.: A 3 nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5 fJ/conv-step ADC. In: ISSCC 2015/Session 21/Innovative Personalized Biomedical Systems/21.2 (2015)

    Google Scholar 

  11. Fan, D., et al.: EHDC: an energy harvesting modeling and profiling platform for body sensor networks. IEEE J. Biomed. Health Inform. 22(1), 33–39 (2018)

    Article  Google Scholar 

  12. Chien, T.-K., et al.: Low-power MCU with embedded ReRAM buffers as sensor hub for IoT applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 6(2), 247–257 (2016)

    Article  MathSciNet  Google Scholar 

  13. Pullini, A., et al.: Mr. Wolf: an energy-precision scalable parallel ultra low power SoC for IoT edge processing. IEEE J. Solid-State Circuits 54(7), 1970–1981 (2019)

    Article  Google Scholar 

  14. Verma, N., et al.: An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid-State Circuits 42(6), 1196–1205 (2007)

    Article  Google Scholar 

  15. Mao, W., et al.: A low power 12-bit 1-kS/s SAR ADC for biomedical signal processing. IEEE Trans. Circuits Syst.-I: Regul. Pap. 66(2), 477–488 (2019)

    Article  Google Scholar 

  16. Carusone, T.C., et al.: Analog Integrated Circuit Design. Wiley, Hoboken (2012)

    Google Scholar 

  17. Sansen, W.M.C., et al.: Analog Design Essentials, vol. 859. Springer, New York (2007)

    Google Scholar 

  18. Alioto, M.: Understanding DC behavior of subthreshold CMOS logic through closed-form analysis. IEEE Trans. Circuits Syst. I Regul. Pap. 57(7), 1597–1607 (2010). https://doi.org/10.1109/TCSI.2009.2034233

    Article  MathSciNet  Google Scholar 

  19. De Marchi, M., et al.: Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs. In: IEEE IEDM, pp. 1–4 (2012)

    Google Scholar 

  20. Trommer, J., et al.: Enabling energy efficiency and polarity control in germanium nanowire transistors by individually gated nanojunctions. ACS Nano 11(2), 1704–1711 (2017)

    Article  Google Scholar 

  21. Hastings, A., et al.: The Art of Analog Layout. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  22. Mallya, S., et al.: Design procedures for a fully differential folded-cascode CMOS operational amplifiers. IEEE J. Solid-State Circuits 24, 1737–1740 (1989)

    Article  Google Scholar 

  23. Gao, H., et al.: HermesE: a 96-channel full data rate direct neural interface in 0.13 \(\upmu \)m CMOS. IEEE J. Solid-State Circuits 47(4), 1043–1055 (2012). https://doi.org/10.1109/JSSC.2012.2185338

    Article  Google Scholar 

  24. Steyaert, M.S.J., Sansen, W.M.C.: A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 22(6), 1163–1168 (1987). https://doi.org/10.1109/JSSC.1987.1052869

    Article  Google Scholar 

  25. Simmich, S., Bahr, A., Rieger, R.: Noise efficient integrated amplifier designs for biomedical applications. Electronics 10, 1522 (2021). https://doi.org/10.3390/electronics10131522

    Article  Google Scholar 

  26. Horestani, F.K., Eshghi, M., Yazdchi, M.: An ultra-low power amplifier for wearable and implantable electronic devices. Microelectron. Eng. 216, 111054 (2019). ISSN 0167-9317

    Google Scholar 

  27. Harrison, R.R., Charles, C.: A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003). https://doi.org/10.1109/JSSC.2003.811979

    Article  Google Scholar 

  28. IEEE. IEEE Standard C95.1. 1999. Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

    Google Scholar 

  29. Wolf, P.D., Reichert, W.M.: Thermal considerations for the design of an implanted cortical brain-machine interface (BMI). In: Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment, pp. 33–38 (2008)

    Google Scholar 

  30. Chae, M.S., Yang, Z., Yuce, M.R., Hoang, L., Liu, W.: A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009). https://doi.org/10.1109/TNSRE.2009.2021607. PMID: 19435684

  31. Charvet, G., et al.: A wireless 64-channel ECoG recording Electronic for implantable monitoring and BCI applications: WIMAGINE. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 783–786 (2012). https://doi.org/10.1109/EMBC.2012.6346048

  32. Couriol, M., Cadareanu, P., Giacomin, E., Gaillardon, P.-E.: A novel high-gain amplifier circuit using super-steep-subthreshold-slope field-effect transistors. In: 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6 (2021). https://doi.org/10.1109/VLSI-SoC53125.2021.9606989

Download references

Acknowledgments

This work was supported by the NSF Career Award #1751064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Couriol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couriol, M., Cadareanu, P., Giacomin, E., Gaillardon, PE. (2022). A First Approach in Using Super-Steep-Subthreshold-Slope Field-Effect Transistors in Ultra-Low Power Analog Design. In: Grimblatt, V., Chang, C.H., Reis, R., Chattopadhyay, A., Calimera, A. (eds) VLSI-SoC: Technology Advancement on SoC Design. VLSI-SoC 2021. IFIP Advances in Information and Communication Technology, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-031-16818-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16818-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16817-8

  • Online ISBN: 978-3-031-16818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics