Skip to main content

Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin Lesion Classification

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer (DART 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13542))

Included in the following conference series:

Abstract

Convolutional Neural Networks have demonstrated human-level performance in the classification of melanoma and other skin lesions, but evident performance disparities between differing skin tones should be addressed before widespread deployment. In this work, we propose an efficient yet effective algorithm for automatically labelling the skin tone of lesion images, and use this to annotate the benchmark ISIC dataset. We subsequently use these automated labels as the target for two leading bias ‘unlearning’ techniques towards mitigating skin tone bias. Our experimental results provide evidence that our skin tone detection algorithm outperforms existing solutions and that ‘unlearning’ skin tone may improve generalisation and can reduce the performance disparity between melanoma detection in lighter and darker skin tones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvi, M., Zisserman, A., Nellåker, C.: Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 556–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_34

    Chapter  Google Scholar 

  2. Brinker, T.J., et al :A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European J. Cancer (Oxford, England: 1990), 111 148–154 (2019)

    Google Scholar 

  3. Brinker, T.J., The melanoma classification benchmark, et al.: Comparing artificial intelligence algorithms to 157 German dermatologists. Eur. J. Cancer 111, 30–37 (2019)

    Google Scholar 

  4. Buolamwini, J., Gebru, T.: Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In Conference on Fairness, Accountability and Transparency, pp. 77–91, PMLR (2018)

    Google Scholar 

  5. Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) pp. 168–172 (2018)

    Google Scholar 

  6. Collins, K.K., Fields, R.C., Baptiste, D., Liu, Y., Moley, J., Jeffe, D.B.: Racial Differences in Survival after Surgical Treatment for Melanoma. Ann. Surg. Oncol. 18(10), 2925–2936 (2011)

    Google Scholar 

  7. Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988)

    Article  Google Scholar 

  8. Ganin, Y., et al.: Domain-adversarial training of neural networks. In: Csurka, Gabriela (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_10

    Chapter  Google Scholar 

  9. Groh, M., et al.: Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset. arXiv:2104.09957 [cs], April 2021

  10. Haenssle, H.A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A., et al.: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  11. Han, S.S., et al: Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J. Invest. Dermatol. 138(7), 1529–1538 (2018)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, Las Vegas, NV, USA, IEEE (2016)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, Honolulu, HI, IEEE (2017)

    Google Scholar 

  14. Jiang, L., Huang, D., Liu, M., Yang, W.: Beyond Synthetic Noise: Deep Learning on Controlled Noisy Labels, August (2020). arXiv:1911.09781 [cs, stat]

  15. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning Not to Learn: Training Deep Neural Networks With Biased Data. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9004–9012, Long Beach, CA, USA, June IEEE (2019)

    Google Scholar 

  16. Kinyanjui, N.M., et al.: Estimating Skin Tone and Effects on Classification Performance in Dermatology Datasets. In Fair ML for Health, page 10, Vancouver, Canada, NeurIPS (2019)

    Google Scholar 

  17. Lio, P.A., Nghiem, P.: Interactive Atlas of Dermoscopy: 2000, Edra Medical Publishing and New Media. 208 pages. Journal of the American Academy of Dermatology. 50(5), 807–808 (2004)

    Google Scholar 

  18. Paszke, A., et al.: PyTorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, Advances in Neural Information Processing Systems 32, pp. 8024–8035 Curran Associates Inc (2019)

    Google Scholar 

  19. Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data. 8(1) 34 (2021)

    Google Scholar 

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, IEEE Computer Society (2016)

    Google Scholar 

  21. Tan, M., Le, Q.V.: EfficientNet: Rethinking Model Scaling forConvolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning. 97 6105–6114 (2019)

    Google Scholar 

  22. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous Deep Transfer Across Domains and Tasks. In 2015 IEEE International Conference on Computer Vision (ICCV). pp. 4068–4076 (2015)

    Google Scholar 

  23. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated Residual Transformations for Deep Neural Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Bevan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 176 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bevan, P.J., Atapour-Abarghouei, A. (2022). Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin Lesion Classification. In: Kamnitsas, K., et al. Domain Adaptation and Representation Transfer. DART 2022. Lecture Notes in Computer Science, vol 13542. Springer, Cham. https://doi.org/10.1007/978-3-031-16852-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16852-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16851-2

  • Online ISBN: 978-3-031-16852-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics