Skip to main content

Stain-AgLr: Stain Agnostic Learning for Computational Histopathology Using Domain Consistency and Stain Regeneration Loss

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer (DART 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13542))

Included in the following conference series:

  • 838 Accesses

Abstract

Stain color variations between Whole Slide Images (WSIs) is a key challenge in the application of Computational Histopathology. Deep learning-based algorithms are susceptible to domain shift and degrade in performance on the WSIs captured from a different source than the training data due to stain color variations. We propose a training methodology Stain-AgLr, that achieves high invariance to stain color changes on unseen test data. In addition to task loss, Stain-AgLr training is supervised with a consistency regularization loss that enforces consistent predictions for training samples and their stain altered versions. An additional decoder is used to regenerate stain color from feature representation of the stain altered images. We compare the proposed approach to state-of-the-art strategies using two histopathology datasets and show significant improvement in model performance on unseen stain variations. We also visualize the feature space distribution of test samples from multiple diagnostic labs and show that Stain-AgLr achieves a significant overlap between the distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)

    Article  Google Scholar 

  2. Bejnordi, B.E., et al.: Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35(2), 404–415 (2015)

    Article  Google Scholar 

  3. de Bel, T., Bokhorst, J.M., van der Laak, J., Litjens, G.: Residual cyclegan for robust domain transformation of histopathological tissue slides. Med. Image Anal. 70, 102004 (2021)

    Article  Google Scholar 

  4. Bera, K., Schalper, K.A., Rimm, D.L., Velcheti, V., Madabhushi, A.: Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16(11), 703–715 (2019)

    Article  Google Scholar 

  5. Bertram, C.A., et al.: Are pathologist-defined labels reproducible? comparison of the tupac16 mitotic figure dataset with an alternative set of labels. In: Cardoso, J., et al. (eds.) IMIMIC/MIL3ID/LABELS -2020. LNCS, vol. 12446, pp. 204–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61166-8_22

    Chapter  Google Scholar 

  6. Chang, J.-R., et al.: Stain mix-up: Unsupervised domain generalization for histopathology images. In: de Chang, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 117–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_11

    Chapter  Google Scholar 

  7. Cohen, J.P., Luck, M., Honari, S.: Distribution matching losses can hallucinate features in medical image translation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 529–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_60

    Chapter  Google Scholar 

  8. Cong, C., Liu, S., Di Ieva, A., Pagnucco, M., Berkovsky, S., Song, Y.: Semi-supervised adversarial learning for stain normalisation in histopathology images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 581–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_56

    Chapter  Google Scholar 

  9. Cui, M., Zhang, D.Y.: Artificial intelligence and computational pathology. Lab. Invest. 101(4), 412–422 (2021)

    Article  Google Scholar 

  10. Faryna, K., van der Laak, J., Litjens, G.: Tailoring automated data augmentation to h &e-stained histopathology. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  11. Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR (2021)

    Google Scholar 

  12. Lafarge, M.W., Pluim, J.P.W., Eppenhof, K.A.J., Moeskops, P., Veta, M.: Domain-adversarial neural networks to address the appearance variability of histopathology images. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 83–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_10

    Chapter  Google Scholar 

  13. Liang, H., Plataniotis, K.N., Li, X.: Stain style transfer of histopathology images via structure-preserved generative learning. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds.) MLMIR 2020. LNCS, vol. 12450, pp. 153–162. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61598-7_15

    Chapter  Google Scholar 

  14. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110. IEEE (2009)

    Google Scholar 

  15. Marini, N., Atzori, M., Otálora, S., Marchand-Maillet, S., Muller, H.: H &e-adversarial network: a convolutional neural network to learn stain-invariant features through hematoxylin & eosin regression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 601–610 (2021)

    Google Scholar 

  16. Melas-Kyriazi, L., Manrai, A.K.: Pixmatch: Unsupervised domain adaptation via pixelwise consistency training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12435–12445 (2021)

    Google Scholar 

  17. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  18. Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap: learning embeddings with deep neural networks for representation and semi-supervised learning. ArXiv e-prints (2020)

    Google Scholar 

  19. Salehi, P., Chalechale, A.: Pix2pix-based stain-to-stain translation: A solution for robust stain normalization in histopathology images analysis. In: 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–7. IEEE (2020)

    Google Scholar 

  20. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: Staingan: Stain style transfer for digital histological images. In: 2019 IEEE 16th international symposium on biomedical imaging (Isbi 2019), pp. 953–956. IEEE (2019)

    Google Scholar 

  21. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  22. Stacke, K., Eilertsen, G., Unger, J., Lundström, C.: A closer look at domain shift for deep learning in histopathology. arXiv preprint arXiv:1909.11575 (2019)

  23. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Tellez, D., et al.: Whole-slide mitosis detection in h &e breast histology using phh3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018)

    Article  Google Scholar 

  25. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019)

    Google Scholar 

  26. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Article  Google Scholar 

  27. Vasiljević, J., Feuerhake, F., Wemmert, C., Lampert, T.: Towards histopathological stain invariance by unsupervised domain augmentation using generative adversarial networks. Neurocomputing 460, 277–291 (2021)

    Article  Google Scholar 

  28. Wagner, S.J., et al.: Structure-Preserving Multi-domain Stain Color Augmentation Using Style-Transfer with Disentangled Representations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 257–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_25

    Chapter  Google Scholar 

  29. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  30. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. Adv. Neural. Inf. Process. Syst. 33, 6256–6268 (2020)

    Google Scholar 

  31. Zhang, Y., Zhang, H., Deng, B., Li, S., Jia, K., Zhang, L.: Semi-supervised models are strong unsupervised domain adaptation learners. arXiv preprint arXiv:2106.00417 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Singhal .

Editor information

Editors and Affiliations

Appendices

A Qualitative Results

See Fig.  4

Fig. 4.
figure 4

Stain normalized samples for all subsets acquired at different labs. Data from Center 1 and RUMC is used as the training for TUPAC and CAMELYON respectively. Deep Learning based models, DCSCI GAN [13], STST GAN [19], and Stain-AgLr (Ours) learn stain color distribution from the entire training dataset; whereas traditional stain normalization methods including Vahadane [26] and Macenko [14] use a single image as reference, shown in the last row. Stain-CRS does not use stain normalized images, rather the normalized image is output of the stain regeneration auxiliary task.

B Model Architecture Details

See Table  3

Table 3. Description of CNN model architecture used for all experiments. We follow CNN architecture provided by [10, 25]. Similarly, \(M_{gen}\) uses stacked convolutions in each stage before upsampling to get the original image size.

C Weightage of Consistency Regularization and Regeneration Loss

See Fig.  5

Fig. 5.
figure 5

Performance of the proposed model with different \(\lambda _1\) and \(\lambda _2\) values - weightage of Stain Regeneration and Consistency Regularization loss, keeping the other \(\lambda =0\), evaluated on Camelyon dataset

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raipuria, G., Shrivastava, A., Singhal, N. (2022). Stain-AgLr: Stain Agnostic Learning for Computational Histopathology Using Domain Consistency and Stain Regeneration Loss. In: Kamnitsas, K., et al. Domain Adaptation and Representation Transfer. DART 2022. Lecture Notes in Computer Science, vol 13542. Springer, Cham. https://doi.org/10.1007/978-3-031-16852-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16852-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16851-2

  • Online ISBN: 978-3-031-16852-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics