Skip to main content

Investigation of Training Multiple Instance Learning Networks with Instance Sampling

  • Conference paper
  • First Online:
Resource-Efficient Medical Image Analysis (REMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13543))

Included in the following conference series:

  • 355 Accesses

Abstract

One challenge of training deep neural networks with gigapixel whole-slide images (WSIs) is the lack of annotation at pixel level or patch (instance) level due to the high cost and time-consuming labeling effort. Multiple instance learning (MIL) as a typical weakly supervised learning method aimed to resolve this challenge by using only the slide-level label without needing patch labels. Not all patches/instances are predictive of the outcome. The attention-based MIL method leverages this fact to enhance the performance by weighting the instances based on their contribution to predicting the outcome. A WSI typically contains hundreds of thousands of image patches. Training a deep neural network with thousands of image patches per slide is computationally expensive and requires a lot of time for convergence. One way to alleviate this issue is to sample a subset of instances/patches from the available instances within each bag for training. While the benefit of sampling strategies for decreasing computing time might be evident, there is a lack of effort to investigate their performances. This project proposes and compares an adaptive sampling strategy with other sampling strategies. Although all sampling strategies substantially reduce computation time, their performance is influenced by the number of selected instances. We show that if we are limited to only select a few instances (e.g., in order of 1\(\sim \)10 instances), the adaptive sampling outperforms other sampling strategies. However, if we are allowed to select more instances (e.g., in order of 100\(\sim \)1000 instances), the random sampling outperforms other sampling strategies.

Genentech Personalized Healthcare Digital Pathology Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraggetta, F., Garozzo, S., Zannoni, G.F., Pantanowitz, L., Rossi, E.D.: Routine digital pathology workflow: the Catania experience. J. Pathol. Inform. 8(51), 1–6 (2017)

    Google Scholar 

  2. Epstein, J.I.: An update of the Gleason grading system. J. Urol. 183(2), 433–440 (2010)

    Article  Google Scholar 

  3. Otálora, S., Marini, N., Müller, H., Atzori, M.: Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification. BMC Med. Imaging 21(77), 1–14 (2021)

    Google Scholar 

  4. Brunyé, T.T., Mercan, E., Weaver, D.L., Elmore, J.G.: Accuracy is in the eyes of the pathologist: the visual interpretive process and diagnostic accuracy with digital whole slide images. J. Biomed. Info. 66, 171–179 (2010)

    Article  Google Scholar 

  5. Tarkhan, A., Simon, N., Bengtsson, T., Nguyen, K., Dai, J.: Survival prediction using deep learning. In: Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021. Proceedings of Machine Learning Research, vol. 146, pp. 207–214. PMLR, 22–24 Mar 2021

    Google Scholar 

  6. Cui, M., Zhang, D.Y.: Artificial intelligence and computational pathology. Lab. Invest. 101, 412–422 (2021)

    Article  Google Scholar 

  7. Quellec, G., Cazuguel, G., Cochener, B., Lamard, M.: Multiple-instance learning for medical image and video analysis. IEEE Rev. Biomed. Eng. 10, 213–234 (2017)

    Article  Google Scholar 

  8. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

    Article  Google Scholar 

  9. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M., Kearns, M., Solla, S. (eds.) Advances in Neural Information Processing Systems, vol. 10. MIT Press (1998)

    Google Scholar 

  10. Liu, G., Wu, J., Zhou, Z.-H.: Key instance detection in multi-instance learning. In: Proceedings of the Asian Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 25, pp. 253–268. PMLR (2012)

    Google Scholar 

  11. Raffel, C., Ellis, D.P.W.: Feed-forward networks with attention can solve some long-term memory problems (2016)

    Google Scholar 

  12. Ramon, J., Raedt, L.D.: Multi instance neural networks. In: ICML Workshop on Attribute-Value and Relational Learning, pp. 53–60 (2000)

    Google Scholar 

  13. Ilse, M., Tomczak, J.M., Welling, M.: Attention-based deep multiple instance learning (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  15. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis with pathological images. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 544–547 (2016)

    Google Scholar 

  16. Wulczyn, E.: Deep learning-based survival prediction for multiple cancer types using histopathology images. PLOS ONE 15(6), e0233678 (2020)

    Google Scholar 

  17. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20

    Chapter  Google Scholar 

  18. Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555–570 (2021)

    Google Scholar 

  19. Lu, M.Y., Chen, R.J., Wang, J., Dillon, D., Mahmood, F.: Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding (2019)

    Google Scholar 

  20. Dehaene, O., Camara, A., Moindrot, O., de Lavergne, A., Courtiol, P.: Self-supervision closes the gap between weak and strong supervision in histology (2020)

    Google Scholar 

  21. Katharopoulos, A., Fleuret, F.: Processing megapixel images with deep attention-sampling models (2019)

    Google Scholar 

  22. Tarkhan, A., Nguyen, T.K., Simon, N., Bengtsson, T., Ocampo, P., Dai, J.: Attention-based deep multiple instance learning with adaptive instance sampling. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2022)

    Google Scholar 

  23. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1–9 (2019)

    Google Scholar 

  24. Sharmay, Y., Ehsany, L., Syed, S., Brown, D.E.: HistoTransfer: understanding transfer learning for histopathology. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4 (2021)

    Google Scholar 

  25. Zuley, M.L., et la.: Radiology data from the cancer genome atlas prostate adenocarcinoma [TCGA-PRAD] collection. Cancer Imaging Arch (2016)

    Google Scholar 

  26. Gleason, D.F., Mellinger, G.T.: Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111(1), 58–64 (1974)

    Article  Google Scholar 

  27. NCCN: NCCN guidelines: prostate cancer (version 4.2018) (2018). https://www2.tri-kobe.org/nccn/guideline/archive/urological2018/english/prostate.pdf. Accessed 11 Nov 2021

  28. Bejnordi, B.E.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Google Scholar 

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  30. Prechelt, L.: Early stopping — but when? In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_5

    Chapter  Google Scholar 

  31. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural Comput. 7(1), 108–116 (1995)

    Article  Google Scholar 

  32. Tarkhan, A., Simon, N.: bigSurvSGD: big survival data analysis via stochastic gradient descent. eprint arXiv:2003.00116 [math, stat] (2020)

  33. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Tarkhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarkhan, A., Nguyen, T.K., Simon, N., Dai, J. (2022). Investigation of Training Multiple Instance Learning Networks with Instance Sampling. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds) Resource-Efficient Medical Image Analysis. REMIA 2022. Lecture Notes in Computer Science, vol 13543. Springer, Cham. https://doi.org/10.1007/978-3-031-16876-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16876-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16875-8

  • Online ISBN: 978-3-031-16876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics