Skip to main content

Self-supervised Antigen Detection Artificial Intelligence (SANDI)

  • Conference paper
  • First Online:
Resource-Efficient Medical Image Analysis (REMIA 2022)

Abstract

Multiplexed pathology imaging techniques allow spatially resolved analysis of cell phenotypes for interrogating disease biology. Existing methods for cell phenotyping in multiplex images require extensive annotation workload due to the need for fully supervised training. To overcome this challenge, we develop SANDI, a self-supervised-based pipeline that learns intrinsic similarities in unlabeled cell images to mitigate the requirement for expert supervision. The capability of SANDI to efficiently classify cells with minimal manual annotations is demonstrated through the analysis of 3 different multiplexed immunohistochemistry datasets. We show that in coupled with representations learnt by SANDI from unlabeled cell images, a linear Support Vector Machine classifier trained on 10 annotations per cell type yields a higher or comparable weighted F1-score to the supervised classifier trained on an average of about 300–1000 annotations per cell type. By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for multiplexed imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AbdulJabbar, K., et al.: Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat. Med. 1–9 (2020)

    Google Scholar 

  2. Bankhead, P., et al.: Qupath: open source software for digital pathology image analysis. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  3. Bindea, G., et al.: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4), 782–795 (2013)

    Article  Google Scholar 

  4. Bromley, J., et al.: Signature verification using a “Siamese’’ time delay neural network. Int. J. Pattern Recognit. Artif. Intell. 07(04), 669–688 (1993)

    Article  Google Scholar 

  5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3) (2011). https://doi.org/10.1145/1961189.1961199

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  7. Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7, 100198 (2022)

    Google Scholar 

  8. Falk, T.: U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  9. Fassler, D.J., et al.: Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagn. Pathol. 15(1), 1–11 (2020)

    Google Scholar 

  10. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  Google Scholar 

  11. Galon, J., et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006)

    Article  Google Scholar 

  12. Gerdes, M.J., et al.: Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. 110(29), 11982 LP–11987 (2013)

    Google Scholar 

  13. Giesen, C., et al.: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11(4), 417–422 (2014)

    Article  Google Scholar 

  14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9726–9735 (2020)

    Google Scholar 

  15. Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M., Madabhushi, A.: Histoqc: an open-source quality control tool for digital pathology slides. JCO Clin. Can. Inf. 3, 1–7 (2019)

    Google Scholar 

  16. Kobayashi, H., Cheveralls, K.C., Leonetti, M.D., Royer, L.A.: Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization. bioRxiv p. 2021.03.29.437595 (2022)

    Google Scholar 

  17. Koohbanani, N.A., Unnikrishnan, B., Khurram, S.A., Krishnaswamy, P., Rajpoot, N.: Self-path: self-supervision for classification of pathology images with limited annotations. IEEE Trans. Med. Imaging 40(10), 2845–2856 (2021)

    Article  Google Scholar 

  18. Nalepa, J., Kawulok, M.: Selecting training sets for support vector machines: a review. Artif. Intell. Rev. 52(2), 857–900 (2019)

    Article  Google Scholar 

  19. Sirinukunwattana, K., Raza, S.E., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  20. Tamborero, D., et al.: A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin. Can. Res. 24(15), 3717–3728 (2018)

    Article  Google Scholar 

  21. Tan, W.C.C., et al.: Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 40(4), 135–153 (2020)

    Article  Google Scholar 

  22. Taube, J.M., et al.: The society for immunotherapy of cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J. ImmunoTher. Can. 8(1), e000155 (2020)

    Article  Google Scholar 

  23. Tsyurmasto, P., Zabarankin, M., Uryasev, S.: Value-at-risk support vector machine: stability to outliers. J. Comb. Optim. 28(1), 218–232 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanyun Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4849 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. et al. (2022). Self-supervised Antigen Detection Artificial Intelligence (SANDI). In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds) Resource-Efficient Medical Image Analysis. REMIA 2022. Lecture Notes in Computer Science, vol 13543. Springer, Cham. https://doi.org/10.1007/978-3-031-16876-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16876-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16875-8

  • Online ISBN: 978-3-031-16876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics