Skip to main content

Differential Learning from Sparse and Noisy Labels for Robust Detection of Clinical Landmarks in Echo Cine Series

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2022)

Abstract

Quantifying dimensions of the Left Ventricle (LV) chamber of the heart on echocardiography (echo) cine series is an essential step to assess the function of the LV. Training deep neural networks to automate such measurements is challenging because the gold standard clinical labels are noisy due to inherent observer variability. Also, the labels are only available for at most two time instances in the cine series, end-diastole (ED) and end-systole (ES). In this paper, we first present a multi-head U-Net based model to leverage all available annotations of LV Internal Diameter (LVID), Interventricular Septal (IVS), and Left Ventricular Posterior Wall (LVPW) in a multi-task landmark detection setting. The first head detects the inner landmarks of LV, or LVID (supervised on ED and ES frames), and the second head detects the outer landmarks of the LV (supervised only on ED frame). Secondly, we propose differential learning to further improve the model’s performance using an auxiliary task that is semantically relevant to the LVID measurement, but is more robust to inherent observer variability in the labels. This is done through comparing estimated Ejection Fraction (EF) based on the representations of a pair of input cines, by integrating the multi-head model as a Siamese network with an EF comparator network. We evaluate our proposed model on two independent datasets: 1) a large cart-based dataset, consisting of 28,577 echo cines obtained from 23,755 patients, where we demonstrate state-of-the-art performance compared to prior work; 2) 51 echo cines obtained from 23 heart-failure patients using a point-of-care ultrasound (POCUS) system. Imaging heart-failure patients is conventionally considered clinically more challenging. Our approach can be extended to tasks in which the labels are not sufficiently reliable for direct regression, yet their comparison as an auxiliary task is possible.

P. Abolmaesumi and T. Tsang—Joint senior authors.

M. Mahdavi, H. Vaseli and C. Luong—Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). www.tensorflow.org/, Software available from tensorflow.org

  2. Brattain, L., Telfer, B., Dhyani, M., et al.: Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom. Radiol. 43, 786–799 (2018)

    Article  Google Scholar 

  3. Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97

    Chapter  Google Scholar 

  4. Chollet, F., et al.: Keras (2015). github.com/fchollet/keras

  5. Gilbert, A., Holden, M., Eikvil, L., Aase, S.A., Samset, E., McLeod, K.: Automated left ventricle dimension measurement in 2D cardiac ultrasound via an anatomically meaningful CNN approach. In: Wang, Q., et al. (eds.) PIPPI/SUSI -2019. LNCS, vol. 11798, pp. 29–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_4

    Chapter  Google Scholar 

  6. Jafari, M.H., et al.: U-LanD: uncertainty-driven video landmark detection. IEEE Trans. Med. Imaging 41(4), 793–804 (2021)

    Article  Google Scholar 

  7. Kumar, A., et al.: LUVLi face alignment: estimating landmarks’ location, uncertainty, and visibility likelihood. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8236–8246, June 2020

    Google Scholar 

  8. Lin, J., et al.: Reciprocal landmark detection and tracking with extremely few annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15170–15179 (2021)

    Google Scholar 

  9. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3691–3700 (2017). https://doi.org/10.1109/CVPR.2017.393

  10. McFarland, T.M., Alam, M., Goldstein, S., Pickard, S.D., Stein, P.D.: Echocardiographic diagnosis of left ventricular hypertrophy. Circulation 57(6), 1140–1144 (1978) https://doi.org/10.1161/01.CIR.57.6.1140, ahajournals.org

  11. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  12. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sofka, M., Milletari, F., Jia, J., Rothberg, A.: Fully convolutional regression network for accurate detection of measurement points. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 258–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_30

    Chapter  Google Scholar 

  15. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696 (2019). https://doi.org/10.1109/CVPR.2019.00584

  16. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3476–3483 (2013). https://doi.org/10.1109/CVPR.2013.446

  17. Thavendiranathan, P., Popovic, Z., Flamm, S., Dahiya, A., Grimm, R., Marwick, T.: Improved inter-observer variability, accuracy and precision of echocardiographic visual LVEF assessment through a self-directed learning program using CMR images. J. Am. Coll. Cardiol. 61(10_Supplement), E1313–E1313 (2013). https://doi.org/10.1016/S0735-1097(13)61313-3

  18. Thorstensen, A., Dalen, H., Amundsen, B.H., Aase, S.A., Stoylen, A.: Reproducibility in echocardiographic assessment of the left ventricular global and regional function, the hunt study. Eur. J. Echocardiogr. 11(2), 149–156 (2010)

    Article  Google Scholar 

  19. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1653–1660 (2014). https://doi.org/10.1109/CVPR.2014.214

  20. Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: a recurrent process applied for end-to-end face alignment. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4177–4187 (2016). https://doi.org/10.1109/CVPR.2016.453

  21. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60

    Chapter  Google Scholar 

  22. Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4998–5006 (2015). https://doi.org/10.1109/CVPR.2015.7299134

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mobina Mahdavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahdavi, M. et al. (2022). Differential Learning from Sparse and Noisy Labels for Robust Detection of Clinical Landmarks in Echo Cine Series. In: Aylward, S., Noble, J.A., Hu, Y., Lee, SL., Baum, Z., Min, Z. (eds) Simplifying Medical Ultrasound. ASMUS 2022. Lecture Notes in Computer Science, vol 13565. Springer, Cham. https://doi.org/10.1007/978-3-031-16902-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16902-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16901-4

  • Online ISBN: 978-3-031-16902-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics