Skip to main content

Opportunistic Hip Fracture Risk Prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2022)

Abstract

Osteoporosis is a common disease that increases fracture risk. Hip fractures, especially in elderly people, lead to increased morbidity, decreased quality of life and increased mortality. Being a silent disease before fracture, osteoporosis often remains undiagnosed and untreated. Areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry (DXA) is the gold-standard method for osteoporosis diagnosis and hence also for future fracture prediction (prognostic). However, the required special equipment is not broadly available everywhere, in particular not to patients in developing countries. We propose a deep learning classification model (FORM) that can directly predict hip fracture risk from either plain radiographs (X-ray) or 2D projection images of computed tomography (CT) data. Our method is fully automated and therefore well suited for opportunistic screening settings, identifying high risk patients in a broader population without additional screening. FORM was trained and evaluated on X-rays and CT projections from the Osteoporosis in Men (MrOS) study. 3108 X-rays (89 incident hip fractures) or 2150 CTs (80 incident hip fractures) with a 80/20 split (training/validation) were used. We show that FORM can correctly predict the 10-year hip fracture risk with a validation AUC of 81.44% ± 3.11%/81.04% ± 5.54% (mean ± STD) including additional information like age, BMI, fall history and health background across a 5-fold cross validation on the X-ray and CT cohort, respectively. Our approach significantly (p < 0.01) outperforms previous methods like Cox Proportional-Hazards Model and with 70.19 ± 6.58 and 74.72 ± 7.21 respectively on the X-ray cohort. Our model outperform on both cohorts hip aBMD based predictions (validation AUC 82.67% ± 0.21% vs. 71.82% ± 0.50% and 78.41% ± 0.33 vs. 76.55% ± 0.89%). We are confident that FORM can contribute on improving osteoporosis diagnosis at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Osteoporotic Fractures in Men (MrOS) Study: https://mrosonline.ucsf.edu.

  2. 2.

    The Study of Osteoporotic Fractures (SOF:) https://sofonline.ucsf.edu.

  3. 3.

    Example image and key points only for illustrative purpose; image source https://radiopaedia.org/cases/normal-hip-x-rays.

  4. 4.

    In the MrOS study, the phantoms are used to calibrate HU to BMD. In this work no BMD calibration is performed for a more realistic opportunistic screening setting.

  5. 5.

    Implemented in Tensorflow 2.4, source code will be release on publication, experiments executed on Nvidia RTX 3090, inference < 1 s per image.

  6. 6.

    https://mrosonline.ucsf.edu, Update august 2021.

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Inc., Oxford (1996)

    MATH  Google Scholar 

  2. Black, D.M., et al.: Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J. Bone Mineral Res. 23(8), 1326–1333 (2008)

    Article  Google Scholar 

  3. Bredbenner, T.L., Mason, R.L., Havill, L.M., Orwoll, E.S., Nicolella, D.P., Osteoporotic Fractures in Men (MrOS) Study: Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J. Bone Mineral Res. 29(9), 2090–2100 (2014)

    Article  Google Scholar 

  4. Camacho, P.M., et al.: American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr. Pract. 26, 1–46 (2020)

    Article  Google Scholar 

  5. Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 34(2), 187–202 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Damm, T., et al.: Artificial intelligence-driven hip fracture prediction based on pelvic radiographs exceeds performance of DXA: the “Study of Osteoporotic Fractures’’ (SOF). J. Bone Mineral Res. 37, 193 (2021)

    Google Scholar 

  7. Ebeling, P.R.: Osteoporosis in men: why change needs to happen. World Osteoporosis Day Thematic Report International Osteoporosis Foundation, Nyon (2014)

    Google Scholar 

  8. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. Grossmann, V., Schmarje, L., Koch, R.: Beyond hard labels: investigating data label distributions. arXiv preprint arXiv:2207.06224 (2022)

  11. Hamidi, Z.: What’s BMD and What We Do in a BMD Centre?, pp. 225–246 (2012)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  13. Hippisley-Cox, J., Coupland, C.: Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339, b4229 (2009)

    Article  Google Scholar 

  14. Ho, C.-S., et al.: Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography. Arch. Osteoporos. 16(1), 1–12 (2021). https://doi.org/10.1007/s11657-021-00985-8

    Article  Google Scholar 

  15. Hsieh, C.I., et al.: Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning. Nat. Commun. 12(1), 1–9 (2021)

    Article  Google Scholar 

  16. Jang, R., Choi, J.H., Kim, N., Chang, J.S., Yoon, P.W., Kim, C.H.: Prediction of osteoporosis from simple hip radiography using deep learning algorithm. Sci. Rep. 11(1), 1–9 (2021)

    Article  Google Scholar 

  17. Johnell, O., Kanis, J.A.: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17(12), 1726–1733 (2006)

    Article  Google Scholar 

  18. Kanis, J.A., Johnell, O., Odén, A., Johansson, H., McCloskey, E.: FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19(4), 385–397 (2008)

    Article  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 60, pp. 1097–1105. Association for Computing Machinery (2012)

    Google Scholar 

  20. Langsetmo, L., et al.: Volumetric bone mineral density and failure load of distal limbs predict incident clinical fracture independent of FRAX and clinical risk factors among older men. J. Bone Mineral Res. 33(7), 1302–1311 (2018)

    Article  Google Scholar 

  21. Pickhardt, P.J., Pooler, B.D., Lauder, T., del Rio, A.M., Bruce, R.J., Binkley, N.: Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann. Intern. Med. 158(8), 588–595 (2013)

    Article  Google Scholar 

  22. Prasad, D., Nguyen, M.H.: Chronic hepatitis, osteoporosis, and men: under-recognised and underdiagnosed. Lancet Diabetes Endocrinol. 9(3), 141 (2021)

    Article  Google Scholar 

  23. Salari, N., et al.: The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 16(1), 1–20 (2021)

    Article  MathSciNet  Google Scholar 

  24. Santarossa, M., et al.: MedRegNet: unsupervised multimodal retinal-image registration with GANs and ranking loss. In: Medical Imaging 2022: Image Processing, vol. 12032, pp. 321–333. SPIE (2022)

    Google Scholar 

  25. Schmarje, L., Brünger, J., Santarossa, M., Schröder, S.M., Kiko, R., Koch, R.: Fuzzy overclustering: semi-supervised classification of fuzzy labels with overclustering and inverse cross-entropy. Sensors 21(19), 6661 (2021)

    Article  Google Scholar 

  26. Schmarje, L., et al.: Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation. arXiv preprint arXiv:2207.06214 (2022)

  27. Schmarje, L., et al.: A data-centric approach for improving ambiguous labels with combined semi-supervised classification and clustering. arXiv preprint arXiv:2106.16209 (2022)

  28. Schousboe, J.T., et al.: Prediction models of prevalent radiographic vertebral fractures among older men. J. Clin. Densitom. 17(4), 449–457 (2014)

    Article  Google Scholar 

  29. Schousboe, J.T., et al.: Prediction of incident major osteoporotic and hip fractures by trabecular bone score (TBS) and prevalent radiographic vertebral fracture in older men. J. Bone Mineral Res. 31(3), 690–697 (2016)

    Article  Google Scholar 

  30. Schousboe, J.T., et al.: Predictors of change of trabecular bone score (TBS) in older men: results from the Osteoporotic Fractures in Men (MrOS) Study. Osteoporos. Int. 29(1), 49–59 (2017). https://doi.org/10.1007/s00198-017-4273-z

    Article  Google Scholar 

  31. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems 33 Pre-proceedings (NeurIPS 2020) (2020)

    Google Scholar 

  32. Su, Y., Kwok, T.C.Y., Cummings, S.R., Yip, B.H.K., Cawthon, P.M.: Can classification and regression tree analysis help identify clinically meaningful risk groups for hip fracture prediction in older American men (the MrOS cohort study)? JBMR Plus 3(10), e10207 (2019)

    Article  Google Scholar 

  33. Treece, G.M., Osteoporotic Fractures in Men (MrOS) Study, et al.: Predicting hip fracture type with cortical bone mapping (CBM) in the osteoporotic fractures in men (MrOS) study. J. Bone Mineral Res. 30(11), 2067–2077 (2015)

    Google Scholar 

  34. US Preventive Services Task Force: Screening for osteoporosis: US preventive services task force recommendation statement. Ann. Intern. Med. 154(5), 356–364 (2011)

    Article  Google Scholar 

  35. Wang, X., et al.: Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J. Bone Mineral Res. 27(4), 808–816 (2012)

    Article  Google Scholar 

  36. Watts, N.B.: The fracture risk assessment tool (FRAX®): applications in clinical practice. J. Women’s Health 20(4), 525–531 (2011)

    Article  Google Scholar 

  37. Welch, B.L.: The generalization of ‘student’s’ problem with several different population variances are involved. Biometrika 34(1–2), 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  38. Yamamoto, N., et al.: Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates. Biomolecules 10(11), 1534 (2020)

    Article  Google Scholar 

  39. Yang, L., Parimi, N., Orwoll, E.S., Black, D.M., Schousboe, J.T., Eastell, R.: Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the Osteoporotic Fractures in Men (MrOS) study. Osteoporos. Int. 29(3), 643–651 (2017). https://doi.org/10.1007/s00198-017-4319-2

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding of Lars Schmarje, Stefan Reinhold, Timo Damm and Claus C. Glüer by the ARTEMIS project (grant no. 01EC1908E) funded by the Federal Ministry of Education and Research (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Schmarje .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 41 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmarje, L., Reinhold, S., Damm, T., Orwoll, E., Glüer, CC., Koch, R. (2022). Opportunistic Hip Fracture Risk Prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study. In: Rekik, I., Adeli, E., Park, S.H., Cintas, C. (eds) Predictive Intelligence in Medicine. PRIME 2022. Lecture Notes in Computer Science, vol 13564. Springer, Cham. https://doi.org/10.1007/978-3-031-16919-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16919-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16918-2

  • Online ISBN: 978-3-031-16919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics