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Abstract. This paper addresses a need for developing ex-post evaluation for data-

driven decisions resulting from collaboration between humans and machines. As 

a first step of a design science project, we propose four design objectives for an 

ex-post evaluation solution, from the perspectives of both theory (concepts from 

the literature) and practice (through a case of industrial production planning): (1) 

incorporate multi-faceted decision evaluation criteria across the levels of envi-

ronment, organization, and decision itself and (2) acknowledge temporal require-

ments of the decision contexts at hand, (3) define applicable mode(s) of collabo-

ration between humans and machines to pursue collaborative rationality, and (4) 

enable a (potentially automated) feedback loop for learning from the (discrete or 

continuous) evaluations of past decisions. The design objectives contribute by 

supporting the development of solutions for the observed lack of ex-post methods 

for evaluating data-driven decisions to enhance human-machine collaboration in 

decision making. Our future research involves design and implementation efforts 

through on-going industry-academia cooperation. 

Keywords: Data-driven decisions, ex-post evaluation, design objectives, col-

laborative rationality, human-machine collaboration. 

1 Introduction 

The ex-post evaluation of data-driven decisions emerges as an increasingly relevant, 

whilst difficult, topic [7–9]. Its complexity lies in that data-driven decision making in-

volves five interrelated elements: the human decision maker, machine (analytics algo-

rithms), data, decision-making process, and decision outcome [9]. This coexistence of 

machine learning (ML) and artificial intelligence (AI) systems with human decision 

makers has ignited interest in augmenting human intelligence and capabilities, resulting 

in more “intelligent” data analysis and support for decision-making and learning [13, 

18, 42]. However, ex-post evaluation is crucial for enabling feedback for experiential 
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learning to improve both organization and machine decisions, and measure the benefits 

of human-machine collaboration [20, 24, 33, 42]. It can result in organizational and 

experiential learning [2, 23], rationalization [22], and sensemaking [51] from the deci-

sion outcomes and consequences, as well as allow for analysis, benchmarking, and 

comparison of the results [24]. Understanding how, why, and to what extent ML and 

AI systems are being used in decision making and their influence on individual and 

organizational decisions [8] is difficult to assess without a holistic evaluation perspec-

tive. This requires a feedback loop between actions and outcomes, and encoding the 

past into rules and procedures for future learning [23]. 

Nevertheless, despite its importance as one of the main stages in classical decision-

making processes, ex-post evaluation is commonly overlooked in recent data-driven 

decision making research. Decision evaluation is more complicated than the mere eval-

uation of a choice [52]. Data-driven decision evaluation is further complicated by the 

fact that many interrelated factors and metrics affect the evaluation, involving both hu-

mans and machines in a constantly changing environment.  

Shrestha et al. [36] distinguish further between three categories of human/machine 

decisions: 

1) purely machine decisions (e.g., recommender systems, personalized ads); 

2) sequence-based decisions, which can involve two sub-types:  

(a) human-to-machine (e.g., sports analytics on which the human expert seeks 

evidence from data);  

(b) machine-to-human (e.g., ideation in innovation);  

3) aggregated decisions involving both humans and machines, in peer-like group 

decision making (e.g., assisted medicine healthcare applications). 

This research focuses on the last two categories, in line with Ransbotham et al.’s 

[33] modes of collaboration where AI recommends and the human decides, or AI gen-

erates insights which the human uses in the decision process, or the human generates 

hypothetical situations and relies on AI to evaluate and assess them.  

Such collaboration results in decisions provided by machines, decisions made by 

humans, and the final data-driven decision which is selected, implemented, and leads 

to certain outcomes, which all require evaluation. For example, let us consider an AI 

system used in clinical decision support. Depending on the context of the decision, one 

performance measure might be more important than another, such as with predicting 

mortality which requires high accuracy and precision [21]. Nevertheless, erroneous di-

agnoses can be made based on differences in the training data, and ground truth labels 

may not always be correct and are subjective to different opinions [19, 21]. Thus, a 

highly accurate model based on the available training data cannot indicate an accurate 

or correct decision, nor positive outcomes. Human intervention and monitoring are nec-

essary, yet if their diagnosis conflicts with that of the machine, which one is correct? 

Accordingly, some outcomes (e.g., correct diagnosis) can only be known after time in 

order to evaluate whether or not the data-driven decision was, in fact, accurate and 

better than purely human decisions, which necessitates ex-post evaluation.  

Due to a lack of information about how to perform such evaluation and the lack of 

IT artifacts to employ, organizations rarely conduct ex-post evaluation of their past de-

cisions. Ex-post evaluation is designed to help companies learn from their mistakes in 
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the past, avoid repeating them in the future, and convey their knowledge to others. It 

does not impede decision-making or promote a no-decision scenario, because the goal 

is to learn from the decision and improve the quality of future decisions, not to evaluate 

the decision-maker (human or machine). 

Furthermore, a comprehensive viewpoint to the multiple, socio-technical, elements 

involved in data-driven decision making is lacking [25], and there is little agreement in 

the literature on what and how to evaluate [17, 41]. The aspect of time and the require-

ments for a longitudinal, or processual evaluation remains ignored, which would be 

imperative to capture the complex dynamics involving change related to multi-faceted 

decisions [5]. Accordingly, we set out with the following research question: 

“What are the requirements and design objectives for ex-post evaluation of data-

driven decisions in organizations?” 

This research problematizes ex-post evaluation of data-driven decision making by 

highlighting the gap in research and the industry need for a more holistic solution.  We 

define design objectives (DOs) for the solution by first extracting the relevant ex-post 

evaluation concepts from the literature. These concepts are then exemplified through 

an industrial example of a chemical production plant to foresee how ex-post evaluation 

of data-driven decisions could be done in practice, and accordingly outline the initial 

requirements for a design solution.– covering two first steps of a design research pro-

gram (cf. [29]) with industry. 

The remainder of the paper is structured as follows. Section 2 covers the related 

research and literature analysis. The research method is outlined in section 3. Section 4 

describes the results and finding, which are the evaluation requirements and DOs. Fi-

nally, section 6 concludes the paper with suggestions for further research. 

2 Literature on Evaluating Data-Driven Decisions 

2.1 Lack of Ex-Post Evaluation Support 

In search of evaluation concepts, criteria, or solutions, we reviewed literature from 

various streams and disciplines, including decision research, information systems (IS), 

behavioral sciences, AI, ML, and information technology (IT). In the following, the 

literature was divided roughly into three streams. 

The first stream focuses on decision theories with attention on human rationality [10, 

22, 37, 47] and decision making [1, 11, 27] in various fields, such as management, 

economics, and psychology. In this stream, ex-ante evaluation of alternatives and 

choices was extensively studied, often focusing on individual metrics and values (e.g., 

utility). Although ex-post evaluation was included as a stage of suggested decision pro-

cesses and deemed crucial in some fields (e.g., policy making [50]), less attention was 

paid on how evaluation was conducted (methods, metrics, time) or how it influenced 

the remainder of the process. The collaboration between humans and machines and how 

to evaluate data-driven decisions was non-prevalent in this stream. 

The second stream focuses on AI and ML from the technical perspective of computer 

science and engineering, and the application of algorithms, models, and methods to a 
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dataset to solve a specific problem [18, 35]. Research tends to focus on the use of ma-

chines for selecting among ex-ante alternatives [25, 45]. Evaluation covers the perfor-

mance of the algorithm or model used in decision making, and a limited set of evalua-

tion metrics are prevalent in the field [26, 49]. Different metrics have their strengths 

and limitations, are dependent on the available data, and may be conflicting (efficiency 

vs. accuracy vs. cost, etc.) [34]. Moreover, evaluating model performance is not the 

same as evaluating the resulting decision or its consequences.  

The third stream of research involves data-driven decision making, highlighting the 

sociotechnical aspect and the relationship between the human and machine decision 

makers, mainly in an organizational context and with an IS perspective [9, 20, 36, 46]. 

Evaluation is still generally limited to the evaluation of choices and the evaluation of 

the performance of algorithms and models. Limited sources considered evaluating out-

comes [43], let alone with multiple metrics [14]. However, no holistic evaluation solu-

tions were found to consider the data-driven decision as a whole.  

Consequently, the interaction between humans and machines and their roles in deci-

sion making is still not clear, and further research is necessary to evaluate the resulting 

decisions and determine the benefit, impact, and learning achieved through human-ma-

chine collaboration. Hence, we need new ways to evaluate AI-enabled decisions and 

benefits of human-machine collaboration in data-driven decision making. [7–9, 20]. 

2.2 Ex-Post Evaluation Concepts for Data-Driven Decisions 

The literature introduces various concepts relevant to evaluating data-driven decisions. 

These serve as a theoretical basis for the requirements analysis leading to the suggested 

DOs (cf. the left column of Table 2 in section 4.1). First, there are embedded contexts 

for examining the decision situation to comprehend the factors affecting the decision 

and its impact [32]. The context pertains to the types of decisions made at different 

levels, ranging from individual to global, with varying requirements, as well as the de-

cision environment, both internal and external [24]. The environmental context is the 

broadest perspective and includes the external environment and circumstances. The or-

ganizational context covers the characteristics of the organization in which the decision 

was made. The decision context includes aspects regarding the focus of the decision 

and the reasons for it, its relationship to other decisions, the complexity of the decision, 

constraints, etc.  [24, 30, 32, 39].  

Time highlights the processual nature of evaluation and refers to when and how often 

the evaluation is conducted, since the outcomes of the decision may vary across time. 

Decisions should be viewed from the perspective of process science which is concerned 

with understanding processes and influencing change in the desired directions over time 

[5]. One of the core requirements is to understand the emergent, situational, and holistic 

features of the decision, or the decision-making process, in its changing context [30], 

which adds to the necessity of a multi-faceted, process-oriented decision evaluation. 

Data-driven decisions comprise data-driven decision elements, which include the 

decision maker, the decision-making process, the data, the analytics/machine, and the 

decision outcome [9]. Nevertheless, identifying decision outcomes is a difficult chal-

lenge due to their multi-faceted nature, variability in interpretation, acceptability and 
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accountability to stakeholders, volatility and change, as well as their difficulty to fully 

grasp or quantitatively measure through indicators of success [27].  

Accordingly, the decision outcome may be evaluated through multiple concepts, 

which extend across the various contexts and vary with time. Of particular importance 

are the impact and consequences of the decision and its perceived gains and losses [4, 

27, 48, 52]. Furthermore, there is the conformance of the decision to certain criteria, as 

a decision involves some goals or values, some facts about the environment, and some 

inferences drawn from the values and facts. It must comply with objectives, criteria, 

standards, rules, and regulations, not only at the organizational context, but also at the 

environmental and societal contexts, since the decision may impact each [4, 27, 52]. 

Various metrics can be used for evaluating data-driven decisions and decision alter-

natives. Data-driven decisions are often evaluated with over-reliance or unwarranted 

dependence upon quantification and quantitative data [32]. Such metrics may poten-

tially be conflicting, and generally focus on evaluating decision alternatives which dif-

fers from the ex-post evaluation of the decision after it is made [52].  

Errors and biases can affect the outcome of decisions and thus need to be pinpointed 

and evaluated. Algorithmic predictions, although susceptible to their own types of er-

rors, may influence human decisions. It is also necessary to differentiate between errors 

and biases that stem from the decision maker, and those which stem from the data, 

analytics, or machine, since each should be managed differently and require pertinent 

action [31]. 

3 Research Method 

3.1 Research Design and Process 

This research covers the first two steps of a design science research (DSR) process, to 

identify and motivate the problem, and to define the objectives of a solution [28]. Arti-

facts and solutions should be based on the relevant business needs from the environ-

ment and the applicable knowledge gained from the knowledge base [15]. Accordingly, 

the relevant concepts for ex-post evaluation were extracted from the literature (section 

2.2). These concepts were used to theoretically support the industrial case and catego-

rize the interview questions and thematize the evaluation requirements (section 4.1). 

For portraying the practical aspects of our research, a case example of a chemical 

production plant is utilized. This plant, named ChemML (anonymized), is a simplified 

abstraction of a larger organization collaborating in an ongoing project, enhanced by 

the extensive knowledge and expertise of one of the authors experienced in chemical 

process engineering and decision making in such processes, and knowledgeable of the 

decisions, roles, data, and processes of ChemML and other chemical production plants. 

This example was selected as chemical production plants have a high availability of 

mission-critical data-driven decisions. In such processes, hundreds or thousands of sen-

sors routinely measure and automatically record data with high frequency. In a short 

time period, massive volumes of data are collected for process monitoring, evaluation, 

and control, which requires transforming the data into information for business and 
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operation decision-making, in which ML tools have an important role [6, 44]. Further-

more, ChemML has recurring, operational, data-driven decisions in its production pro-

cess, long-lasting adoption of systems utilizing ML in supporting decision making, and 

a desire to further evaluate, automate, and enhance the data-driven decision making 

processes.  

  Two expert interviews were held, from viewpoints of both the production planner 

and process operator roles, to discuss ChemML’s data-driven decisions, explore the 

current evaluation methods, and discuss the need and requirements for a desired evalu-

ation solution. By comparing the current and desired approaches for decision evaluation 

stated in the interviews, and applying deductive thematic analysis [38], we summarized 

the results into a set of evaluation requirements for each of the concepts. According to 

their functional similarities, the requirements were further thematized and mapped to 

more abstract and implementable DOs for an evaluation solution. The requirements 

were revised again to ensure that each requirement mapped to at least one DO. 

The value of this study resides in the Eval 1 stage of Sonnenberg and vom Brocke’s 

[40] DSR evaluation process for designing artifacts. This initial evaluation is conducted 

to justify a solution’s novelty and importance for practice and to ensure that a mean-

ingful problem has been identified. Accordingly, we attempted to evaluate feasibility, 

understandability, simplicity, completeness, and level of detail of the evaluation con-

cepts and DOs in future design of an ex-post evaluation solution. 

Internal validity was achieved through revision and agreement on the evaluation 

concepts, requirements, and DOs by each of the authors and expert in the case. The 

evaluation concepts and DOs were further presented to, and validated by, four experts 

in external software organization, under a case for utilizing data-driven decision mak-

ing and AI to predict and prevent customer churn. The interview questions were vali-

dated by one of the analytics experts in the organization, and an additional interview 

was conducted with a customer success expert. The results were found to support the 

case of ChemML and findings of this paper, thus supporting external validity.  

3.2 Case of ChemML 

The production planning problem is a typical example of a complex, data-driven 

decision process with many interrelated factors, constraints, and major impacts. The 

orders placed by customers put a great pressure on production. Adjusting the production 

sequence must be done carefully to avoid disruption of production cycles, such as re-

duction in production rate and shutdowns. Moreover, ramping up the process and re-

covering from interruptions requires expenditure of energy, thus increasing the envi-

ronmental load of the plant. Abrupt product sequence changes may cause quality devi-

ations and wear of the machines and equipment. 

Figure 1(a) depicts a simplified flowsheet of ChemML’s multi-step, multi-product 

production process. Two critical features complicate the decision making:  

(1) production planning is based on make-to-order (MTO) as the production batches 

cannot be stored for prolonged times, and  

(2) routine operation has slow feedback from product quality to operational deci-

sions.  
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Figure 1(b) illustrates data flows of ChemML. The automation system data includes 

the sensory measurements such as temperature (TI), material consumption (FI), quality 

attributes (QI), and energy consumption (EI) from the production process. ML tools 

infer data to routine operations and predict performance for manual production plan-

ning. The data-driven tools are advisory since the final decisions (process operation and 

resource planning) need to be made by humans due to responsibility issues. 

 

 

Fig. 1. (a) Production process schematic; (b) Data flows and decision support architecture 

Based on the interviews, the data-driven decisions from the viewpoints of both the 

production planner and process operator roles, as well as the need for ex-post evaluation 

are described below in Table 1 (due to confidentiality requirements, some details could 

not be disclosed).  

Table 1. Data-driven decisions at ChemML 

Decision  

Context 
Production Planner Viewpoint Process Operator Viewpoint 

Description 

• Determine and plan the produc-

tion targets and capacities for a 

specific time interval and sched-

ule the production process 

(weekly). 

• Operation decisions (continuous) 

during the execution of the pro-

cess. Includes choosing set points 

for the process (such as feed rates 

and temperature), steering the 

process, and avoiding/overcom-

ing fault situations. 

Purpose 

• Optimize production rate and 

product portfolio to meet market 

demand. 

• Optimize the process in terms of 

efficiency (energy, material), 

avoid faults, and solve possible 

problems. 

Decision 

Maker(s) 

• Production planner (human deci-

sion maker) determines objec-

tives and constraints. 

• ML tool supports decision by 

simulating scenarios and suggest-

ing alternative schedules. 

• ML tool provides outputs, in-

sights, and predictions based on 

data and process parameters to 

steer the process and dynamically 

overcome fault situations. 

• ML tool provides suggestions of 

values for optimizing process ef-

ficiency. 
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• Human selects best schedule to 

meet designated criteria and 

makes the final decision. 

• Human may overlook output of 

the ML tool and decide not to use 

it. 

• Final decisions are made by the 

process operator who may use 

their own knowledge and exper-

tise, along with additional moni-

toring methods. 

Mode of  

Collaboration 
• AI recommends, human decides. 

• AI recommends, human decides. 

• AI generates insights, human 

uses in decision process. 

Additional  

Requirements 

(Environment, 

Organization) 

• Meet sales demands and maxim-

ize profit. 

• Conform to safety and quality re-

quirements, meet standards and 

regulations, and laboratory test-

ing. 

• Minimize waste and carbon foot-

print, and conform to pollution 

limits and the use of hazardous 

materials. 

• Meet production targets in time. 

• Conform to safety and quality re-

quirements, and professional 

standards and regulations. 

Need for  

Ex-Post  

Evaluation 

• Assess reliability and effective-

ness of ML tool. 

• Enhance, both human and ma-

chine, learning from evaluation 

feedback. 

• Evaluate the collaboration be-

tween the human and machine. 

• Evaluating decisions at different 

time intervals would give indica-

tions if the reliability of the ML 

tool is increasing across time. 

• Evaluate ML tool and its value to 

decision making. 

• Evaluate ML indicators and their 

usefulness in decision making. 

• Evaluate the extent to which ML 

tool is used and affects the deci-

sion. 

• Evaluate the decision outcome 

• Evaluate expertise of the process 

operator, and the monitoring 

methods used to reach the deci-

sion. 

• Evaluate uncertainties in meas-

urement data and their effect on 

the decision. 

4 Results and Findings 

4.1 Analysis of Ex-Post Evaluation Requirements 

Table 1 summarizes the requirements and considerations found necessary in the case 

for ex-post evaluation, in light of the analytical concepts originating in our literature 

review. Each of these conceptual elements helped to identify the interrelated require-

ments. Accordingly, we thematically grouped the similar requirements together from 

which we derived four main DOs, explained below. Each requirement in the table is 

labelled with the pertaining DO it corresponds to. 
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Table 2. Data-driven decision evaluation requirements 

Evaluation  

Concepts 
Proposed Evaluation Requirements/ Considerations 

Overall  

Evaluation 

Define the evaluation metrics. Evaluation should not revolve purely 

around a single metric. (DO1) 

Determine the evaluation process, the evaluators, and their roles. 

(DO1, DO2, DO4) 

Differentiate between the evaluation of the ML tool output/decision, 

and the evaluation of the overall decision involving both humans and 

machines. (DO1, DO2, DO3) 

Simplicity of evaluation, without requiring much time or work. (DO1, 

DO2, DO4) 

Transparency of the evaluation process to increase trust in the ML 

tools. (DO1, DO2, DO3, DO4) 

Identify relevant criteria for each data-driven decision evaluation. 

Some criteria and elements need only be evaluated when triggered by 

change, or problems arise. (DO1, DO2, DO4) 

Automated/partially automated evaluation. (DO1, DO2, DO4) 

Continuous feedback and learning from past decisions.  (DO2, DO4) 

Evaluation 

Across Contexts  

(Decision,  

Organization, 

Environment) 

Determine the relevant criteria and metrics in each of the contextual 

levels. (DO1, DO2) 

Determine the interrelationship between the metrics across the contex-

tual levels, and how they affect the data-driven decision and its evalu-

ation. (DO1, DO4) 

Determine what is being evaluated (decision/set of decisions) and by 

whom. (DO1, DO2, DO4) 

Evaluation 

Across Time 

(Processual) 

Determine the time intervals and periods for which certain types of 

decisions on various levels should be evaluated and/or re-evaluated. 

(DO1, DO2, DO4) 

Account for changes in decision related concepts and contexts (DO1, 

DO2, DO4 

D
a

ta
-D

ri
v

en
 D

ec
is

io
n

 E
le

m
en

ts
 

Decision 

Maker 

Include both the human and the machine decision makers and suggest 

various metrics or criteria for evaluating each type of decision maker.  

(DO1, DO3) 

Enhance learning of the decision makers based on the results of past 

decisions. (DO3, DO4) 

Differentiate evaluation according to the mode of collaboration be-

tween the human and the machine. This may call for different evalua-

tion methods, metrics, and requirements for different modes of collab-

oration. (DO1, DO2, DO3, DO4)  

Evaluate decision maker-related aspects; it may be useful in learning 

from past decisions. (DO3, DO4) 

Process In this case not required, or too difficult to evaluate. (DO1, DO2)) 

Data Determine criteria and metrics for evaluating the data. (DO1) 
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Suggest the effect of the data or changes in the data, on the decision. 

(DO1, DO2)  

Provide simple, automated methods for evaluating the data. (DO1, 

DO4) 

Distinguish between the data required for making the decision, and the 

data required for evaluating the decision. (DO1, DO2) 

Analytics/  

Machine 

Incorporate additional metrics and deal with conflicting metrics. 

(DO1) 

Suggest the effect of the analytics (and choice of analytics) on the de-

cision, and how to evaluate and incorporate the ML output. (DO1, 

DO2, DO3, DO4) 

Enhance learning of the ML tool and feed the results back into the 

training data. (DO3, DO4) 

Decision 

Outcome 

Determine metrics and criteria for evaluating the outcome of the deci-

sion after it is made (what defines a “good” decision?). (DO1, DO2) 

Observe the effect of the other decision factors, and their changes, on 

the decision outcome. (DO1, DO2, DO4) 

Determine when the decision should be evaluated. (DO1, DO2, DO4)  

Consider changing outcomes and the temporal factor. (DO1, DO2, 

DO4)  

Impact and  

Consequences 

Determine the metrics and criteria for evaluating the impact and con-

sequences of the decision across contexts. (DO1, DO2) 

Determine the timeframe within which the impact should be evalu-

ated. (DO1, DO2, DO4) 

Conformance 

Determine the relevant conformance metrics and criteria across the 

contextual levels. (DO1) 

Distinguish between short-term and long-term conformance evalua-

tion criteria. Conformance requirements may change across time. 

(DO1, DO2, DO4) 

Metrics 

Deal with conflicting metrics, goals, and constraints. (DO1) 

Incorporate separate metrics related to the human decision maker and 

the decision, along with the AI/ML metrics and those related to the 

machine. (DO3) 

Prioritize the most important/relevant criteria and metrics and provid-

ing guidance on weights and selection of metrics. (DO1, DO4) 

Differentiate between short-term and long-term evaluation metrics. Do 

not include all metrics each time. (DO1, DO2, DO4) 

Errors and  

Biases 

Differentiate between errors and biases related to human decision 

makers, machines (analytics), and data. (DO1, DO3) 

Define appropriate metrics and criteria for evaluating errors and bi-

ases. (DO1) 

Identify errors to learn from past decisions for future decisions. (DO1, 

DO4) 
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4.2 Design Objectives for Ex-Post Decision Evaluation 

Consequently, four main DOs were concluded for a future solution which responds to 

the needs of ChemML, as shown in Table 3.  

The first DO for an implementable ex-post data-driven decision evaluation method is 

that it should be comprehensive and incorporate multi-faceted criteria. These criteria 

may range across the contextual levels priorly discussed, and include some of the pro-

posed concepts as facets. For instance, in the ChemML case, the contextual levels can 

incorporate environmental impacts, which are governed by averaged or long-term pro-

cess performance, whereas short-term decisions related to process operation may have 

positive short-term impacts (on a decision level) but negative long-term impacts. Fur-

thermore, the criteria should differentiate between the data-driven decision elements, 

such as the evaluation of the machine, the decision outcome, the data, etc., which may 

potentially be conflicting and otherwise lead to confusion. In ChemML, although the 

accuracy and evaluation metrics of the ML tool’s decision may have been high in a 

majority of instances, the expert’s evaluation generally differed and took into account 

different aspects and criteria. 

Similarly, DO2 encourages performing processual evaluation across different stages 

in time. This considers the changing contexts and aspects regarding the data-driven 

decision, which should be captured in the evaluation to understand the longitudinal 

consequences and impact of the decision. A concrete example related to ChemML 

would be the performance evaluation of indirect measurements, which can be depend-

ent on factors such as seasonal variability of the raw materials, changes in ambient 

conditions, and unmodeled changes related to equipment fouling or degradation. 

Table 3. Design objectives for ex-post evaluation of data-driven decisions 

 Design Objective 

1 
Incorporate multi-faceted (potentially conflicting) evaluation criteria across contex-

tual levels.  

2 Perform processual evaluation across time. 

3 
Define the applicable mode of collaboration between humans and machines and eval-

uate its effect on decision-making, decision outcomes, and collaborative rationality. 

4 
Enable a (potentially automated) feedback loop for learning from the (discrete or 

continuous) evaluation of past decisions. 

 

DO3 focuses on the relation between the human and the machine in the data-driven 

decision making process. By incorporating into the evaluation the mode of collabora-

tion between humans and machines and the consequent effect on decision making, the 

decision outcomes, and achieving a collaborative rationality, we can glean more in-

sights on such a collaboration and how to steer it to make better decisions. In ChemML, 

the evaluation would require, for example, regular interviews with end-users to assess 

the utilization degree of the machine, or development of automated logging of the hu-

man-machine interaction during the decision-making process. The latter could also fa-

cilitate DO4, where a (possibly automated) feedback loop ensues from the evaluation 

and enables learning through evaluating past decisions, both from an organizational and 
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machine perspective, and consequently updates the training data to enhance ML. Sim-

ilar to how decisions may be discrete or continuous, the evaluation of decisions and the 

resulting learning may also be discrete or continuous, depending on the decision type 

and context. Therefore, a design solution should be developed ingraining these objec-

tives. 

5 Discussion 

The two main contributions of our research are: 

1) the extraction of evaluation concepts from the literature, and  

2) building upon them in the case of ChemML to define the requirements and DOs 

for data-driven decision evaluation in practice.  

The concepts to be considered in ex-post decision evaluation are particularly of interest 

due to their ability to capture the multi-faceted and changing nature of data-driven de-

cisions, rather than focus on individual or static evaluation concepts (e.g., at the level 

of the decision itself), as is mainly done in current studies. These concepts theoretically 

support, and are supported by, the practical example of ChemML. Its contemporary 

evaluation methods did not consider multiple criteria or contexts, although a compre-

hensive, ex-post evaluation method was desired to enable learning, as well as to en-

hance future decision making and increase adoption of the ML tool.  

The DOs further contribute to theory and practice, and emphasize the need for a 

comprehensive evaluation method which incorporates multi-faceted evaluation criteria 

across the levels of the decision itself, organization, environment, and time. By reflect-

ing on ChemML, we can see that multiple interrelated factors are present in each deci-

sion, and individual evaluation metrics on a single level remain insufficient in terms of 

ex-post learning. This challenges current research, which focuses on ML evaluation 

metrics, such as confidence, uncertainty, specificity, sensitivity, accuracy, area under 

the curve (AUC), etc. [26, 49]. Whereas such measures are necessary for evaluating the 

ML model performance as such, our paper argues that they are insufficient for ex-post 

evaluation and learning about the decisions. 

This argument is in line with Lebovitz et al. [19], which show the limitations of 

primary performance measures used by managers to evaluate AI tools and their output. 

Contrarily, the actual results and knowledge of the experts, in many instances, conflict 

with the reported measures of the tools [16], which in the ChemML case decreased trust 

in the tool. Furthermore, the machine ignores certain important variables only human 

experts are capable of considering [14, 19], which was also the case with ChemML. 

This emphasizes the need for additionally accounting for the modes of collaboration 

between humans and machines in the evaluation of data-driven decisions. 

Depending on the use case and level of analysis, one performance measure may be 

more important than another, and the mathematically optimal may become ethically 

problematic. Decision outcomes are thus the ultimate indicators of success and multiple 

factors should be considered in the evaluation, along with long-term follow up [19]. 

Accordingly, our first and third DOs support, and are supported by, such claims in re-

cent research and endeavor to provide a solution to the evaluation paradox. Although 
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some papers do consider evaluation of the algorithms, along with evaluation of the im-

pact of the decision [14], their research focuses on a particular approach for data-driven 

decision making in a domain-specific decision, and they do not aim to provide ex-post 

evaluation solutions.   

The second DO highlights the importance of a process science perspective and cap-

turing the changes in contexts, concepts, and consequences, as well as understanding 

how they evolve, interact, and unfold, through a processual evaluation across time [5]. 

The set of decisions and concepts involved in the evaluation, as well as the evaluation 

method, may differ according to the stage in time when the evaluation is made. For 

example, in ChemML, production was evaluated within a shorter time frame based on 

whether the production targets were met. However, the environmental impact is used 

to evaluate a set of decisions at a later stage in time. Thus, it is crucial to know what to 

evaluate when.  

The fourth DO builds on the traditional claim that ex-post evaluation enables learn-

ing from past decisions. This accentuates the need for designing a feedback loop which 

performs an evaluation based on the first two DOs, and feeds the results of the evalua-

tion back into the process to enable a combination of both organizational and machine 

learning. This feedback loop is part of a prospective solution for monitoring how data-

driven decisions are taken, cultivating criteria to evaluate such decisions, and reflecting 

through double-loop learning for the continuous evaluation and improvement of hu-

man-machine collaboration [7, 8, 20, 42]. While this feedback loop (or parts of it) could 

potentially be automated to simplify the task, we still support Grønsund and Aanestad’s 

[12] claims that necessitate the human-in-the-loop configuration for ensuring that per-

formance of the algorithm meets the organization’s requirements.  

Utilizing the knowledge presented by these DOs, a theory-ingrained and practically 

feasible solution to the ex-post evaluation of data-driven decisions can be developed. 

This further contributes to practice by enabling the evaluation and understanding of 

data-driven decisions, enhancing learning usage of AI and ML tools, and adding in-

sights to the collaboration between humans and machines and the impact on decision 

making. Accordingly, decision makers, developers, and collaborators in the data-driven 

decision making process can benefit from the results. Finally, the development of a 

data-driven decision evaluation solution following the determined DOs may potentially 

address the data-driven decision making challenges faced by ChemML and many other 

organizations. 

6 Conclusion and Future Work 

In this paper, we aimed to problematize the ex-post evaluation of collaborative data-

driven decisions, from the perspectives of theory and practice, and determine the DOs 

for a solution. Accordingly, by perusing the literature we determined the need for ex-

post evaluation and a variety of concepts and factors to consider in the evaluation. From 

a practical perspective, ChemML exemplified the need for data-driven decision evalu-

ation in industry, and was used to identify the necessary requirements and considera-

tions for a proposed ex-post evaluation solution.  
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From these requirements, four DOs for a solution were proposed: (1) the existence 

of an implementable, comprehensive method incorporating multi-faceted (potentially 

conflicting) evaluation criteria across contextual levels (decision, organization, envi-

ronment), (2) accounting for the changes in concepts, contexts, and outcomes across 

time and supporting a processual evaluation, (3) incorporating into the evaluation the 

mode of collaboration between humans and machines and its effect on decision-mak-

ing, decision outcomes, and achieving a collaborative rationality, and (4) enabling a 

(potentially automated) feedback loop for learning from the evaluation of past deci-

sions. 

Future work includes utilizing the DOs towards building and testing a design artifact, 

in collaboration with industry, which could be used in an organizational context for the 

purpose of data-driven decision evaluation. This artifact should support “how” (pro-

cess, metrics, and criteria) and “when” (which stages in time, if at all) to evaluate data-

driven decisions. Additionally, we aim for a longitudinal case study in order to under-

stand the organizational context surrounding data-driven decisions prior to the intro-

duction of the evaluation, during the implementation, and post- implementation, fol-

lowing Bailey and Barley’s [3] approach to studying intelligent systems in organiza-

tional contexts. Finally, we intend to research the concept of collaborative rationality 

further, and how to enhance the collaboration between humans and machines in deci-

sion making.  
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