Abstract
This paper addresses a need for developing ex-post evaluation for data-driven decisions resulting from collaboration between humans and machines. As a first step of a design science project, we propose four design objectives for an ex-post evaluation solution, from the perspectives of both theory (concepts from the literature) and practice (through a case of industrial production planning): (1) incorporate multi-faceted decision evaluation criteria across the levels of environment, organization, and decision itself and (2) acknowledge temporal requirements of the decision contexts at hand, (3) define applicable mode(s) of collaboration between humans and machines to pursue collaborative rationality, and (4) enable a (potentially automated) feedback loop for learning from the (discrete or continuous) evaluations of past decisions. The design objectives contribute by supporting the development of solutions for the observed lack of ex-post methods for evaluating data-driven decisions to enhance human-machine collaboration in decision making. Our future research involves design and implementation efforts through on-going industry-academia cooperation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajzen, I.: The social psychology of decision making. In: Social Psychology: handbook of basic principles, pp. 297–325 (1996)
Argyris, C., Schön, D.A.: Organizational Learning: A Theory of Action Perspective. Addison-Wesley. 77/78, 345 (1997). https://doi.org/10.2307/40183951
Bailey, D.E., Barley, S.R.: Beyond design and use: How scholars should study intelligent technologies. Inf. Organ. 30(2), 100286 (2020). https://doi.org/10.1016/j.infoandorg.2019.100286
Bouyssou, D. (ed.): Evaluation and Decision Models: A Critical Perspective. Kluwer Academic Publishers, Boston (2000)
vom Brocke, J., et al.: Process Science: The Interdisciplinary Study of Continuous Change. Social Science Research Network, Rochester, NY (2021). https://doi.org/10.2139/ssrn.3916817
Chiang, L., et al.: Big data analytics in chemical engineering. Ann. Rev. Chem. Biomol. Eng. 8(1), 63–85 (2017). https://doi.org/10.1146/annurev-chembioeng-060816-101555
Duan, Y., et al.: Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. Int. J. Inf. Manage. 48, 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Dwivedi, Y.K., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. 57, 101994 (2021). https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Elgendy, N., et al.: DECAS: a modern data-driven decision theory for big data and analytics. J. Decis. Syst. 31, 1–37 (2021). https://doi.org/10.1080/12460125.2021.1894674
Gigerenzer, G., Gaissmaier, W.: Decision making: nonrational theories. In: International Encyclopedia of the Social & Behavioral Sciences, pp. 911–916. Elsevier (2015). https://doi.org/10.1016/B978-0-08-097086-8.26017-0
Gigerenzer, G., Gaissmaier, W.: Heuristic decision making. Ann. Rev. Psychol. 62(1), 451–482 (2011). https://doi.org/10.1146/annurev-psych-120709-145346
Grønsund, T., Aanestad, M.: Augmenting the algorithm: Emerging human-in-the-loop work configurations. J. Strat. Inf. Syst. 29(2), 101614 (2020). https://doi.org/10.1016/j.jsis.2020.101614
Grover, V., et al.: The perils and promises of big data research in information systems. J. Assoc. Inf. Syst. 21(2), 9 (2020). https://doi.org/10.17705/1jais.00601
Herm-Stapelberg, N., Rothlauf, F.: The crowd against the few: measuring the impact of expert recommendations. Decis. Support Syst. 138, 113345 (2020). https://doi.org/10.1016/j.dss.2020.113345
Hevner, A.R., et al.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). https://doi.org/10.2307/25148625
Ioannidis, J.P.A., et al.: Forecasting for COVID-19 has failed. Int J Forecast. 38, 423–438 (2020). https://doi.org/10.1016/j.ijforecast.2020.08.004
Klecun, E., Cornford, T.: A critical approach to evaluation. Eur. J. Inf. Syst. 14(3), 229–243 (2005). https://doi.org/10.1057/palgrave.ejis.3000540
Kotsiantis, S.B., et al.: Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26(3), 159–190 (2007). https://doi.org/10.1007/s10462-007-9052-3
Lebovitz, S. et al.: Is AI ground truth really true? The dangers of training and evaluating AI tools based on experts’ know-what. MIS Q. 45(3), 1501–1526 (2021). https://doi.org/10.25300/MISQ/2021/16564
Lyytinen, K., et al.: Metahuman systems = humans + machines that learn. J. Inf. Technol. 36(4), 427–445 (2020). https://doi.org/10.1177/0268396220915917
Magrabi, F., et al.: Artificial intelligence in clinical decision support: challenges for evaluating AI and practical implications: a position paper from the IMIA technology assessment & quality development in health informatics working group and the EFMI working group for assessment of health information systems. Yearb Med. Inform. 28(01), 128–134 (2019). https://doi.org/10.1055/s-0039-1677903
March, J.G.: Bounded Rationality, Ambiguity, and the Engineering of Choice. The Bell Journal of Economics. 9(2), 587–608 (1978). https://doi.org/10.2307/3003600
March, J.G.: Primer on Decision Making: How Decisions Happen. Simon and Schuster (1994)
Masha, E.M.: The case for data driven strategic decision making. Eur. J. Bus. Manage. 6, 137–146 (2014)
Namvar, M., Intezari, A.: Wise data-driven decision-making. In: Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y.K., Pappas, I., Mäntymäki, M. (eds.) Responsible AI and Analytics for an Ethical and Inclusive Digitized Society. LNCS, vol. 12896, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85447-8_10
Nasir, M., et al.: Developing a decision support system to detect material weaknesses in internal control. Decis. Support Syst. 151, 113631 (2021). https://doi.org/10.1016/j.dss.2021.113631
Nutt, P.C., Wilson, D.C.: Handbook of Decision Making. John Wiley, Chichester (2010)
Peffers, K., et al.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302
Peffers, K., Rothenberger, M., Kuechler, B. (eds.): Design Science Research in Information Systems. Advances in Theory and Practice. LNCS, vol. 7286. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29863-9
Pettigrew, A.M.: Contextualist research and the study of organizational change processes. Res. Inf. Syst. 1, 53–78 (1985)
Phillips-Wren, G., et al.: Cognitive bias, decision styles, and risk attitudes in decision making and DSS. J. Decis. Syst. 28(2), 63–66 (2019). https://doi.org/10.1080/12460125.2019.1646509
Power, D.J., et al.: Analytics, bias, and evidence: the quest for rational decision making. J. Decis. Syst. 28(2), 120–137 (2019). https://doi.org/10.1080/12460125.2019.1623534
Ransbotham, S. et al.: Expanding AI’s Impact With Organizational Learning. https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/. Accessed 22 Dec 2021
Raschka, S.: Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. http://arxiv.org/abs/1811.12808 (2020)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, Hoboken (2021)
Shrestha, Y.R., et al.: Organizational decision-making structures in the age of artificial intelligence. Calif. Manage. Rev. 61(4), 66–83 (2019). https://doi.org/10.1177/0008125619862257
Simon, H.A.: A behavioral model of rational choice. Q. J. Econ. 69(1), 99 (1955). https://doi.org/10.2307/1884852
Smith, J.A.: Qualitative Psychology: A Practical Guide to Research Methods. SAGE, Thousand Oaks (2015)
Snowden, D.J., Boone, M.E.: A leader’s framework for decision making. Harv. Bus. Rev. 85, 68 (2007)
Sonnenberg, C., vom Brocke, J.: Evaluations in the science of the artificial – reconsidering the build-evaluate pattern in design science research. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) Design Science Research in Information Systems. Advances in Theory and Practice. LNCS, vol. 7286, pp. 381–397. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29863-9_28
Stockdale, R., Standing, C.: An interpretive approach to evaluating information systems: a content, context, process framework. Eur. J. Oper. Res. 173(3), 1090–1102 (2006). https://doi.org/10.1016/j.ejor.2005.07.006
Sturm, T., et al.: Coordinating human and machine learning for effective organization learning. MISQ. 45(3), 1581–1602 (2021). https://doi.org/10.25300/MISQ/2021/16543
Sturm, T., et al.: The Case of Human-Machine Trading as Bilateral Organizational Learning. 18 (2021)
Tomperi, J., et al.: Mass-balance based soft sensor for monitoring ash content at two-ply paperboard manufacturing. Nord. Pulp Pap. Res. J. 37(1), 175–183 (2022). https://doi.org/10.1515/npprj-2021-0046
Troisi, O., et al.: Growth hacking: Insights on data-driven decision-making from three firms. Ind. Mark. Manage. 90, 538–557 (2020). https://doi.org/10.1016/j.indmarman.2019.08.005
Trunk, A., Birkel, H., Hartmann, E.: On the current state of combining human and artificial intelligence for strategic organizational decision making. Bus. Res. 13(3), 875–919 (2020). https://doi.org/10.1007/s40685-020-00133-x
Tversky, A., Kahneman, D.: Rational choice and the framing of decisions. J. Business. 59(4), S251–S278 (1986)
Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice. Science 211(4481), 453–458 (1981). https://doi.org/10.1126/science.7455683
Vo, N.N.Y., et al.: Deep learning for decision making and the optimization of socially responsible investments and portfolio. Decis. Support Syst. 124, 113097 (2019). https://doi.org/10.1016/j.dss.2019.113097
van Voorst, S., Zwaan, P.: The (non-)use of ex post legislative evaluations by the European commission. J. Eur. Publ. Policy 26(3), 366–385 (2019). https://doi.org/10.1080/13501763.2018.1449235
Weick, K.E.: Sensemaking in Organizations. Sage Publications, Thousand Oaks (1995)
Weirich, P.: Realistic Decision Theory: Rules for Nonideal Agents in Nonideal Circumstances. Oxford University Press, Oxford (2004)
Acknowledgment
This research has been partially funded by the ITEA3 project Oxilate (https://itea3.org/project/oxilate.html).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Elgendy, N., Elragal, A., Ohenoja, M., Päivärinta, T. (2022). Ex-Post Evaluation of Data-Driven Decisions: Conceptualizing Design Objectives. In: Nazaruka, Ē., Sandkuhl, K., Seigerroth, U. (eds) Perspectives in Business Informatics Research. BIR 2022. Lecture Notes in Business Information Processing, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-031-16947-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-16947-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16946-5
Online ISBN: 978-3-031-16947-2
eBook Packages: Computer ScienceComputer Science (R0)