Abstract
In this paper, we present a deep learning-based framework for automated analysis and diagnosis of Cryptosporidium parvum from fluorescence microscopic images. First, a coarse segmentation is applied to roughly delimit the contours either of individual parasites or of grouped ones in the form of a single object from original images. Subsequently, a classifier will be applied to identify grouped parasites which are separated from each other by applying a fine segmentation. Our coarse-to-fine segmentation methodology achieves high accuracy on our generated dataset (over 3,000 parasites) and permit to improve the performance of direct segmentation approaches.
Supported by H4DC (Health for Dairy Cows) project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
O’Leary, J.K., Sleator, R.D., Lucey, B.: Cryptosporidium spp. diagnosis and research in the 21st century. Food Waterborne Parasitol. 24, e00131 (2021)
Feng, Y., Ryan, U.M., Xiao, L.: Genetic diversity and population structure of cryptosporidium. Trends Parasitol. 34(11), 997–1011 (2018)
Hatam-Nahavandi, K., Ahmadpour, E., Carmena, D., Spotin, A., Bangoura, B., Xiao, L.: Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit. Vectors 12(1), 1–23 (2019)
Gerace, E., Presti, V.D.M.L., Biondo, C.: Cryptosporidium infection: epidemiology, pathogenesis, and differential diagnosis. Eur. J. Microbiol. Immunol. 9(4), 119–123 (2019)
Kotloff, K.L., et al.: Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMs): a prospective, case-control study. The Lancet 382(9888), 209–222 (2013)
Blackburn, B.G., et al.: Cryptosporidiosis associated with ozonated apple cider. Emerg. Infect. Dis. 12(4), 684 (2006)
APHA: Veterinary investigation diagnosis analysis (VIDA) report, 2014 (2014)
Thomson, S., et al.: Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet. Res. 48(1), 1–16 (2017)
Del Coco, V.F., Córdoba, M.A., Basualdo, J.A.: Cryptosporidium infection in calves from a rural area of Buenos Aires, Argentina. Vet. Parasitol. 158(1–2), 31–35 (2008)
Feng, Y., et al.: Prevalence and genotypic identification of cryptosporidium spp., giardia duodenalis and enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasit. Vectors 12(1), 1–9 (2019)
Chellan, P., Sadler, P.J., Land, K.M.: Recent developments in drug discovery against the protozoal parasites cryptosporidium and toxoplasma. Bioorg. Med. Chem. Lett. 27(7), 1491–1501 (2017)
Lichtman, J.W., Conchello, J.-A.: Fluorescence microscopy. Nat. Methods 2(12), 910–919 (2005)
Widmer, K.W., Oshima, K.H., Pillai, S.D.: Identification of cryptosporidium parvum oocysts by an artificial neural network approach. Appl. Environ. Microbiol. 68(3), 1115–1121 (2002)
Madhu, G.: Computer vision and machine learning approach for malaria diagnosis in thin blood smears from microscopic blood images. In: Rout, J.K., Rout, M., Das, H. (eds.) Machine Learning for Intelligent Decision Science. AIS, pp. 191–209. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3689-2_8
Shi, L., Guan, Z., Liang, C., You, H.: Automatic classification of plasmodium for malaria diagnosis based on ensemble neural network. In: Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing, pp. 80–85 (2020)
Yang, Z., Benhabiles, H., Hammoudi, K., Windal, F., He, R., Collard, D.: A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images. Neural Comput. Appl. 34, 1–16 (2021)
Roder, M., Passos, L.A., Ribeiro, L.C.F., Benato, B.C., Falcão, A.X., Papa, J.P.: Intestinal parasites classification using deep belief networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12415, pp. 242–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_23
Machaca, M.Y.P., Rosas, M.L.M., Castro-Gutierrez, E., Dıaz, H.A.T., Huerta, V.L.V.: Data augmentation using generative adversarial network for gastrointestinal parasite microscopy image classification (2020)
Osaku, D., Cuba, C.F., Suzuki, C.T., Gomes, J.F., Falcão, A.X.: Automated diagnosis of intestinal parasites: a new hybrid approach and its benefits. Comput. Biol. Med. 123, 103917 (2020)
Kromp, F., et al.: Evaluation of deep learning architectures for complex immunofluorescence nuclear image segmentation. IEEE Trans. Med. Imaging 40(7), 1934–1949 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Yi, J., et al.: Multi-scale cell instance segmentation with keypoint graph based bounding boxes. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 369–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_41
Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R., Gunduz-Demir, C.: Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation. Cytometry A 89(4), 338–349 (2016)
Arslan, S., Ersahin, T., Cetin-Atalay, R., Gunduz-Demir, C.: Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images. IEEE Trans. Med. Imaging 32(6), 1121–1131 (2013)
Prangemeier, T., Reich, C., Koeppl, H.: Attention-based transformers for instance segmentation of cells in microstructures. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 700–707. IEEE (2020)
Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation, arXiv preprint arXiv:2102.04306 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)
Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation, arXiv preprint arXiv:2105.05537 (2021)
Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)
Funding
This project has received funding from the Interreg 2 Seas programme 2014–2020 co-funded by the European Regional Development Fund under subsidy contract No. 2S05-043 H4DC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Z., Benhabiles, H., Windal, F., Follet, J., Leniere, AC., Collard, D. (2022). A Coarse-to-Fine Segmentation Methodology Based on Deep Networks for Automated Analysis of Cryptosporidium Parasite from Fluorescence Microscopic Images. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-16961-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16960-1
Online ISBN: 978-3-031-16961-8
eBook Packages: Computer ScienceComputer Science (R0)