Skip to main content

A Coarse-to-Fine Segmentation Methodology Based on Deep Networks for Automated Analysis of Cryptosporidium Parasite from Fluorescence Microscopic Images

  • Conference paper
  • First Online:
Medical Optical Imaging and Virtual Microscopy Image Analysis (MOVI 2022)

Abstract

In this paper, we present a deep learning-based framework for automated analysis and diagnosis of Cryptosporidium parvum from fluorescence microscopic images. First, a coarse segmentation is applied to roughly delimit the contours either of individual parasites or of grouped ones in the form of a single object from original images. Subsequently, a classifier will be applied to identify grouped parasites which are separated from each other by applying a fine segmentation. Our coarse-to-fine segmentation methodology achieves high accuracy on our generated dataset (over 3,000 parasites) and permit to improve the performance of direct segmentation approaches.

Supported by H4DC (Health for Dairy Cows) project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Leary, J.K., Sleator, R.D., Lucey, B.: Cryptosporidium spp. diagnosis and research in the 21st century. Food Waterborne Parasitol. 24, e00131 (2021)

    Article  Google Scholar 

  2. Feng, Y., Ryan, U.M., Xiao, L.: Genetic diversity and population structure of cryptosporidium. Trends Parasitol. 34(11), 997–1011 (2018)

    Article  Google Scholar 

  3. Hatam-Nahavandi, K., Ahmadpour, E., Carmena, D., Spotin, A., Bangoura, B., Xiao, L.: Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit. Vectors 12(1), 1–23 (2019)

    Article  Google Scholar 

  4. Gerace, E., Presti, V.D.M.L., Biondo, C.: Cryptosporidium infection: epidemiology, pathogenesis, and differential diagnosis. Eur. J. Microbiol. Immunol. 9(4), 119–123 (2019)

    Article  Google Scholar 

  5. Kotloff, K.L., et al.: Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMs): a prospective, case-control study. The Lancet 382(9888), 209–222 (2013)

    Article  Google Scholar 

  6. Blackburn, B.G., et al.: Cryptosporidiosis associated with ozonated apple cider. Emerg. Infect. Dis. 12(4), 684 (2006)

    Article  Google Scholar 

  7. APHA: Veterinary investigation diagnosis analysis (VIDA) report, 2014 (2014)

    Google Scholar 

  8. Thomson, S., et al.: Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet. Res. 48(1), 1–16 (2017)

    Article  Google Scholar 

  9. Del Coco, V.F., Córdoba, M.A., Basualdo, J.A.: Cryptosporidium infection in calves from a rural area of Buenos Aires, Argentina. Vet. Parasitol. 158(1–2), 31–35 (2008)

    Article  Google Scholar 

  10. Feng, Y., et al.: Prevalence and genotypic identification of cryptosporidium spp., giardia duodenalis and enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasit. Vectors 12(1), 1–9 (2019)

    Article  Google Scholar 

  11. Chellan, P., Sadler, P.J., Land, K.M.: Recent developments in drug discovery against the protozoal parasites cryptosporidium and toxoplasma. Bioorg. Med. Chem. Lett. 27(7), 1491–1501 (2017)

    Article  Google Scholar 

  12. Lichtman, J.W., Conchello, J.-A.: Fluorescence microscopy. Nat. Methods 2(12), 910–919 (2005)

    Article  Google Scholar 

  13. Widmer, K.W., Oshima, K.H., Pillai, S.D.: Identification of cryptosporidium parvum oocysts by an artificial neural network approach. Appl. Environ. Microbiol. 68(3), 1115–1121 (2002)

    Article  Google Scholar 

  14. Madhu, G.: Computer vision and machine learning approach for malaria diagnosis in thin blood smears from microscopic blood images. In: Rout, J.K., Rout, M., Das, H. (eds.) Machine Learning for Intelligent Decision Science. AIS, pp. 191–209. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3689-2_8

    Chapter  Google Scholar 

  15. Shi, L., Guan, Z., Liang, C., You, H.: Automatic classification of plasmodium for malaria diagnosis based on ensemble neural network. In: Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing, pp. 80–85 (2020)

    Google Scholar 

  16. Yang, Z., Benhabiles, H., Hammoudi, K., Windal, F., He, R., Collard, D.: A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images. Neural Comput. Appl. 34, 1–16 (2021)

    Google Scholar 

  17. Roder, M., Passos, L.A., Ribeiro, L.C.F., Benato, B.C., Falcão, A.X., Papa, J.P.: Intestinal parasites classification using deep belief networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12415, pp. 242–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_23

    Chapter  Google Scholar 

  18. Machaca, M.Y.P., Rosas, M.L.M., Castro-Gutierrez, E., Dıaz, H.A.T., Huerta, V.L.V.: Data augmentation using generative adversarial network for gastrointestinal parasite microscopy image classification (2020)

    Google Scholar 

  19. Osaku, D., Cuba, C.F., Suzuki, C.T., Gomes, J.F., Falcão, A.X.: Automated diagnosis of intestinal parasites: a new hybrid approach and its benefits. Comput. Biol. Med. 123, 103917 (2020)

    Article  Google Scholar 

  20. Kromp, F., et al.: Evaluation of deep learning architectures for complex immunofluorescence nuclear image segmentation. IEEE Trans. Med. Imaging 40(7), 1934–1949 (2021)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)

    Article  Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  24. Yi, J., et al.: Multi-scale cell instance segmentation with keypoint graph based bounding boxes. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 369–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_41

    Chapter  Google Scholar 

  25. Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R., Gunduz-Demir, C.: Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation. Cytometry A 89(4), 338–349 (2016)

    Article  Google Scholar 

  26. Arslan, S., Ersahin, T., Cetin-Atalay, R., Gunduz-Demir, C.: Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images. IEEE Trans. Med. Imaging 32(6), 1121–1131 (2013)

    Article  Google Scholar 

  27. Prangemeier, T., Reich, C., Koeppl, H.: Attention-based transformers for instance segmentation of cells in microstructures. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 700–707. IEEE (2020)

    Google Scholar 

  28. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation, arXiv preprint arXiv:2102.04306 (2021)

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  30. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation, arXiv preprint arXiv:2105.05537 (2021)

  31. Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)

    Article  Google Scholar 

Download references

Funding

This project has received funding from the Interreg 2 Seas programme 2014–2020 co-funded by the European Regional Development Fund under subsidy contract No. 2S05-043 H4DC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziheng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Benhabiles, H., Windal, F., Follet, J., Leniere, AC., Collard, D. (2022). A Coarse-to-Fine Segmentation Methodology Based on Deep Networks for Automated Analysis of Cryptosporidium Parasite from Fluorescence Microscopic Images. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16961-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16960-1

  • Online ISBN: 978-3-031-16961-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics