Skip to main content

Leukocyte Classification Using Multimodal Architecture Enhanced by Knowledge Distillation

  • Conference paper
  • First Online:
Medical Optical Imaging and Virtual Microscopy Image Analysis (MOVI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13578))

  • 895 Accesses

Abstract

Recently, a lot of automated white blood cells (WBC) or leukocyte classification techniques have been developed. However, all of these methods only utilize a single modality microscopic image i.e. either blood smear or fluorescence based, thus missing the potential of a better learning from multimodal images. In this work, we develop an efficient multimodal architecture based on a first of its kind multimodal WBC dataset for the task of WBC classification. Specifically, our proposed idea is developed in two steps - 1) First, we learn modality specific independent subnetworks inside a single network only; 2) We further enhance the learning capability of the independent subnetworks by distilling knowledge from high complexity independent teacher networks. With this, our proposed framework can achieve a high performance while maintaining low complexity for a multimodal dataset. Our unique contribution is two-fold - 1) We present a first of its kind multimodal WBC dataset for WBC classification; 2) We develop a high performing multimodal architecture which is also efficient and low in complexity at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Please note that the colors of the images are for representation only and not the actual colors. The technical details of excitation lights and actual colours will be released once the disclosure has been filed.

References

  1. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  2. Blumenreich, M.S.: The white blood cell and differential count. In: Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edn. (1990)

    Google Scholar 

  3. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  4. Damer, N., Dimitrov, K., Braun, A., Kuijper, A.: On learning joint multi-biometric representations by deep fusion. In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2019)

    Google Scholar 

  5. Das, B., Bansal, S., Mohanta, G.C., Debnath, S.K., Bhatia, P.: Fluorescence imaging-based system for performing white blood cell counts. In: Singh, K., Gupta, A.K., Khare, S., Dixit, N., Pant, K. (eds.) ICOL-2019. SPP, vol. 258, pp. 617–620. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9259-1_142

    Chapter  Google Scholar 

  6. D’mello, S.K., Kory, J.: A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. (CSUR). 47(3), 1–36 (2015)

    Google Scholar 

  7. Forcucci, A., Pawlowski, M.E., Majors, C., Richards-Kortum, R., Tkaczyk, T.S.: All-plastic, miniature, digital fluorescence microscope for three part white blood cell differential measurements at the point of care. Biomed. Opt. Express 6(11), 4433–4446 (2015)

    Article  Google Scholar 

  8. Gadzicki, K., Khamsehashari, R., Zetzsche, C.: Early vs late fusion in multimodal convolutional neural networks. In: 2020 IEEE 23rd International Conference on Information Fusion (FUSION), pp. 1–6. IEEE (2020)

    Google Scholar 

  9. George-Gay, B., Parker, K.: Understanding the complete blood count with differential. J. Perianesth. Nurs. 18(2), 96–117 (2003)

    Article  Google Scholar 

  10. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  11. Havasi, M., et al.: Training independent subnetworks for robust prediction. arXiv preprint arXiv:2010.06610 (2020)

  12. Hinton, G., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.025312(7) (2015)

  13. Khamael, A.D., Banks, J., Nugyen, K., Al-Sabaawi, A., Tomeo-Reyes, I., Chandran, V.: Segmentation of white blood cell, nucleus and cytoplasm in digital haematology microscope images: a review-challenges, current and future potential techniques. IEEE Rev. Biomed. Eng. 14, 290–306 (2020)

    Google Scholar 

  14. Liu, J., Zhang, S., Wang, S., Metaxas, D.N.: Multispectral deep neural networks for pedestrian detection. arXiv preprint arXiv:1611.02644 (2016)

  15. Ojaghi, A., et al.: Label-free hematology analysis using deep-ultraviolet microscopy. Proc. Natl. Acad. Sci. 117(26), 14779–14789 (2020)

    Article  Google Scholar 

  16. Ramesh, N., Dangott, B., Salama, M.E., Tasdizen, T.: Isolation and two-step classification of normal white blood cells in peripheral blood smears. J. Pathol. Inform. 3, 13 (2012)

    Article  Google Scholar 

  17. Snoek, C.G., Worring, M., Smeulders, A.W.: Early versus late fusion in semantic video analysis. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 399–402 (2005)

    Google Scholar 

  18. Theml, H., Diem, H., Haferlach, T.: Color Atlas of Hematology: Practical Microscopic and Clinical Diagnosis. Thieme, Leipzig (2004)

    Book  Google Scholar 

  19. Tkachuk, D.C., Hirschmann, J.V., Wintrobe, M.M.: Wintrobe’s Atlas of Clinical Hematology. Lippincott Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  20. Yakimov, B.P., et al.: Label-free characterization of white blood cells using fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and erythrophagocytosis. Biomed. Opt. Express 10(8), 4220–4236 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litao Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 408 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Mehta, D., Mahapatra, D., Ge, Z. (2022). Leukocyte Classification Using Multimodal Architecture Enhanced by Knowledge Distillation. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16961-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16960-1

  • Online ISBN: 978-3-031-16961-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics