Skip to main content

Machine Learning and Deep Learning Techniques for Epileptic Seizures Prediction: A Brief Review

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 16th International Conference (PACBB 2022) (PACBB 2022)

Abstract

The third most common neurological disorder, only behind stroke and migraines, is Epilepsy. The main criteria for its diagnosis are the occurrence of unprovoked seizures and the possibility of new seizures appearing. Usually, the professional in charge of detecting these seizures is a neurologist who interprets the patients’ electroencephalography. However, more accurate, precise, and sensitive methods are needed. Machine learning has increased as a viable alternative, reducing costs and ensuring rapid diagnostic time. This work reviews the state of the art in machine learning applied to epileptic seizure detection and prediction as a prospective study before developing a novel seizure prediction algorithm.

This work was supported by the HERMES project, funded by the European Union under the Horizon 2020 FET-proactive program, Grant Agreement n. 824164., as well as the “XAI - XAI - Sistemas Inteligentes Auto Explicativos creados con Módulos de Mezcla de Expertos” project, ID SA082P20, financed by Junta Castilla y León, Consejería de Educación, and FEDER funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study. Technical report, GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2015)

    Google Scholar 

  2. Aarabi A, He B (2012) A rule-based seizure prediction method for focal neocortical epilepsy. Clin Neurophysiol 123:1111–1122

    Article  Google Scholar 

  3. Acharya UR, Oh S, Hagiwara Y, Adeli H (2017) Deep convolutional neural network for the automated detection of seizure using EEG signals. Comput Biol Med 100:270–278

    Article  Google Scholar 

  4. Acharya U, Yanti R, Zheng J, Mookiah M, Tan J, Martis R et al (2013) Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int J Neural Syst 23

    Google Scholar 

  5. Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87

    Article  Google Scholar 

  6. Alves N, Rodrigues R, Rocha M (2022) BioTMPy: a deep learning-based tool to classify biomedical literature. In: Lecture notes in networks and systems. LNNS, vol 325, pp 115–125

    Google Scholar 

  7. Bandarabadi M, Rasekhi J, Teixeira C, Karami M (2015) On the proper selection of preictal period for seizure prediction. Epilepsy Behav 45:158–166

    Article  Google Scholar 

  8. Bandarabadi M, Teixeira C, Rasekhi J, Dourado A (2015) Epileptic seizure prediction using relative spectral power features. Clin Neurophysiol 126:237–248

    Article  Google Scholar 

  9. Calvaresi D, Albanese G, Calbimonte J, Schumacher M (2020) Seamless: simulation and analysis for multi-agent system in time-constrained environments. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). LNAI, vol 12092, pp 392–397

    Google Scholar 

  10. Casado-Vara R, González-Briones A, Prieto J, Corchado J (2019) Smart contract for monitoring and control of logistics activities: pharmaceutical utilities case study. Adv Intell Syst Comput 771:509–517

    Google Scholar 

  11. Casado-Vara R, Novais P, Gil A, Prieto J, Corchado J (2019) Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access 7:11972–11984

    Article  Google Scholar 

  12. Casado-Vara R, Prieto-Castrillo F, Corchado J (2018) A game theory approach for cooperative control to improve data quality and false data detection in WSN. Int J Robust Nonlinear Control 28(16):5087–5102

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen H, Shen J, Wang L, Jin Y (2021) Towards a more effective bidirectional LSTM-based learning model for human-bacterium protein-protein interactions. In: Advances in intelligent systems and computing. AISC, vol 1240, pp 91–101

    Google Scholar 

  14. Costa Â, Novais P, Corchado J, Neves J (2012) Increased performance and better patient attendance in an hospital with the use of smart agendas. Logic J IGPL 20(4):689–698

    Article  MathSciNet  Google Scholar 

  15. Cristani M, Tomazzoli C, Olivieri F, Pasetto L (2020) An ontology of changes in normative systems from an agentive viewpoint. In: Communications in computer and information science. CCIS, vol 1233, pp 131–142

    Google Scholar 

  16. Cámpora NE, Mininni CJ, Kochen S, Lew SE (2019) Seizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalography. Sci Rep 9:20022

    Article  Google Scholar 

  17. D’Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection overmultiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Inf Theory 50:603–615

    Google Scholar 

  18. De Meo P, Falcone R, Sapienza A (2020) Fast and efficient partner selection in large agents’ communities: when categories overcome direct experience. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). LNAI, vol 12092, pp 106–117

    Google Scholar 

  19. Direito B, Teixeira CA, Sales F, Castelo-Branco M, Dourado A (2017) A realistic seizure prediction study based on multiclass SVM. Int J Neural Syst 27:1750006–1750021

    Article  Google Scholar 

  20. Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62:531–544

    Article  MathSciNet  MATH  Google Scholar 

  21. Dressler O, Schneider G, Stockmanns G, Kochs E (2004) Awareness and the EEG power spectrum: analysis of frequencies. Br J Anaesth 93

    Google Scholar 

  22. D’Auria M, Scott E, Lather R, Hilty J, Luke S (2020) Assisted parameter and behavior calibration in agent-based models with distributed optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). LNAI, vol 12092, pp 93–105

    Google Scholar 

  23. Fatima N (2020) Enhancing performance of a deep neural network: a comparative analysis of optimization algorithms. ADCAIJ Adv Distrib Comput Artif Intell J 9(2):79–90

    MathSciNet  Google Scholar 

  24. Gadhoumi K, Lina J, Gotman J (2013) Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin Neurophysiol 124:1745–1754

    Article  Google Scholar 

  25. García-Retuerta D, Canal-Alonso A, Casado-Vara R, Rey A, Panuccio G, Corchado J (2021) Bidirectional-pass algorithm for interictal event detection. In: Advances in intelligent systems and computing. AISC, vol 1240, pp 197–204

    Google Scholar 

  26. Garg G, Singh V, Gupta J, Mittal A (2011) Relative wavelet energy as a new feature extractor for sleep classification using EEG signals. Int J Biomed Signal Process 2:75–80

    Google Scholar 

  27. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349

    Article  MathSciNet  MATH  Google Scholar 

  28. Gupta S, Meena J, Gupta O (2020) Neural network based epileptic EEG detection and classification. ADCAIJ Adv Distrib Comput Artif Intell J 9(2):23–32

    Google Scholar 

  29. Gupta S, Ranga V, Agrawal P (2022) EpilNet: a novel approach to IoT based epileptic seizure prediction and diagnosis system using artificial intelligence. ADCAIJ Adv Distrib Comput Artif Intell J 10(4):435–452

    Google Scholar 

  30. Haenlein A (2004) A beginner’s guide to partial least squares analysis. Underst Stat 283–297

    Google Scholar 

  31. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common’’ neurologic disorders? Neurology 68:326–337

    Article  Google Scholar 

  32. Hjorth B, Elema-Schonander A (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29:306–310

    Article  Google Scholar 

  33. Iasemidis L, Shiau D, Pardalos P, Chaovalitwongse W, Narayanon K, Prasad A (2005) Long-termprospective on-line real-time seizure prediction. Clin Neurophysiol 116:532–544

    Article  Google Scholar 

  34. Khan A, Zubair S, Khan S (2021) Comprehensive performance analysis of neurodegenerative disease incidence in the females of 60–96 year age group. ADCAIJ Adv Distrib Comput Artif Intell J 10(2):183–196

    MathSciNet  Google Scholar 

  35. Kumar M, Rao Y (2018) Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition. Clust Comput 1–11

    Google Scholar 

  36. Lane N, Kahanda I (2021) DeepACPpred: a novel hybrid CNN-RNN architecture for predicting anti-cancer peptides. In: Advances in intelligent systems and computing. AISC, vol 1240, pp 60–69

    Google Scholar 

  37. Lee K, Jeong H, Kim S, Yang D, Kang HC, Choi E (2022) Real-time seizure detection using EEG: a comprehensive comparison of recent approaches under a realistic setting. arXiv:2201.08780 [cs]

  38. Li T, Fan H, García J, Corchado J (2018) Second-order statistics analysis and comparison between arithmetic and geometric average fusion: application to multi-sensor target tracking. Inf Fusion 51:233–243

    Article  Google Scholar 

  39. Li T, Su J, Liu W, Corchado J (2017) Approximate gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inf Technol Electron Eng 18(12):1913–1939

    Article  Google Scholar 

  40. Mallat S, Hwang W (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory 38:617–643

    Article  MathSciNet  MATH  Google Scholar 

  41. Mandelbrot B (1983) Geometry of nature. Freeman

    Google Scholar 

  42. Mena Mamani N (2020) Machine learning techniques and polygenic risk score application to prediction genetic diseases. ADCAIJ Adv Distrib Comput Artif Intell J 9(1):5-14

    Google Scholar 

  43. Muhamada AW, Mohammed AA (2022) Review on recent computer vision methods for human action recognition. ADCAIJ Adv Distrib Comput Artif Intell J 10(4):361–379

    Google Scholar 

  44. Niedermeyer E, da Silva F (2004) Electroencephalography: basic principles, clinical applications, and related fields. Williams & Wilkins

    Google Scholar 

  45. Nikias C, Petropulu A (1993) Higher order spectra analysis: a nonlinear signal processing framework. PTR Prentice Hall

    Google Scholar 

  46. Nugroho S, Weinmann A, Schindelhauer C, Christ A (2020) Averaging emulated time-series data using approximate histograms in peer to peer networks. In: Communications in computer and information science. CCIS, vol 1233, pp 339–346

    Google Scholar 

  47. Ouyang G, Li X, Guan X (2007) Application of wavelet-based similarity analysis to epileptic seizures prediction. Comput Biol Med 37:430–437

    Article  Google Scholar 

  48. Ozaktas H, Zalevsky Z, Kutay M (2001) The fractional Fourier transform. Wiley

    Google Scholar 

  49. Parvez M, Paul M (2016) Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Trans Neural Syst Rehabil Eng 24:158–168

    Article  Google Scholar 

  50. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572

    Article  MATH  Google Scholar 

  51. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  Google Scholar 

  52. Press M (ed) (1999) The infinite Gaussian mixture model

    Google Scholar 

  53. Press W, Flannery B, Teukolsky S, Vetterling W (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press

    Google Scholar 

  54. Pérez-López R, Blanco G, Fdez-Riverola F, Lourenço A (2021) The activity of bioinformatics developers and users in stack overflow. In: Advances in intelligent systems and computing. AISC, vol 1240, pp 23–31

    Google Scholar 

  55. Rajev P, WArd M, Rickus J, Worth R, Irazoqui P (2010) Real-time seizure prediction from local field potentials using an adaptive wiener algorithm. Comput Biol Med 40:97–108

    Google Scholar 

  56. Ramoser H, Mller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446

    Article  Google Scholar 

  57. Reddy B, Chatteriji B (1996) An FFT-based technique for translation, rotation, and scale invariant image registration. IEEE Trans Image Process 5:1266–1271

    Article  Google Scholar 

  58. Richman J, Moorman J (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:2039–2049

    Article  Google Scholar 

  59. Robert S, Fisher AC, Arzimanoglou A, Bogacz A, Cross JH, Elger Jr CE, Forsgren L, French JA, Glynn M, Hesdorffer DC, Lee B, Mathern GW, Moshé SL, Perucca E, Scheffer IE, Tomson T, Watanabe M, Wiebe S (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482

    Google Scholar 

  60. Rosenstein M, Colins J, de Luca C (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65:117–134

    Article  MathSciNet  MATH  Google Scholar 

  61. Shafique A, Sayeed M, Tsakalis K (2018) Nonlinear dynamical systems with chaos and big data: a case study of epileptic seizure prediction and control. Guide to big data applications. Springer (2018)

    Google Scholar 

  62. Tiouris K, Pezoulas V, Zervakis M, Konitsiotis S, Koutsouris D, Fotiadis D (2018) A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med 99:24–37

    Article  Google Scholar 

  63. Truong N, Nguyen A, Kuhlmann L, Bonyadi M, Yang J, Ippolito S et al (2018) Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 105:104–111

    Article  Google Scholar 

  64. Varatharajah Y, Iyer R, Berry B, Worrell G, Brinkmann B (2017) Seizure forecasting and the preictal state in canine epilepsy. Neural Syst 27

    Google Scholar 

  65. Wei X, Zhou L, Zhang Z, Chen Z, Zhou Y (2019) Early prediction of epileptic seizures using a long-term recurrent convolutional network. J Neurosci Methods 327:108395

    Article  Google Scholar 

  66. Williamson J, Bliss D, Browne D, Narayanan J (2012) Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy Behav 25:230–238

    Article  Google Scholar 

  67. Yan J, Li J, Xu H, Yu Y, Xu T (2022) Seizure prediction based on transformer using scalp electroencephalogram. Appl Sci 12:4158

    Article  Google Scholar 

  68. Yves M (1992) Wavelets and operators. Cambridge University Press

    Google Scholar 

  69. Zandi A, Tafreshi R, Javidan M, Dumont G (2013) Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng 60:1401–1413

    Article  Google Scholar 

  70. Zhang Y, Zhou W, Yuan Q, Wu Q (2014) A low computation cost method for seizure prediction. Epilepsy Res 108:1357–1366

    Article  Google Scholar 

  71. Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23:337–343

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernández, M., Canal-Alonso, Á., de la Prieta, F., Rodríguez, S., Prieto, J., Corchado, J.M. (2023). Machine Learning and Deep Learning Techniques for Epileptic Seizures Prediction: A Brief Review. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Caraiman, S., Gil-González, A.B. (eds) Practical Applications of Computational Biology and Bioinformatics, 16th International Conference (PACBB 2022). PACBB 2022. Lecture Notes in Networks and Systems, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-031-17024-9_2

Download citation

Publish with us

Policies and ethics