Skip to main content

Exploring Xylella fastidiosa’s Metabolic Traits Using a GSM Model of the Phytopathogenic Bacterium

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 16th International Conference (PACBB 2022) (PACBB 2022)

Abstract

Xylella fastidiosa is a gram-negative phytopathogenic bacterium able to infect over 500 plant species, with devastating consequences for agricultural and forest-based economies. In the last decade, genome-scale metabolic (GSM) models have become important systems biology tools for studying the metabolic behaviour of different organisms. In this work, a GSM model of X. fastidiosa subsp. pauca De Donno is presented, comprising 1164 reactions, 1379 metabolites, and 508 genes. The model was validated by comparing in silico simulations with available experimental data. The GSM model allowed identifying potential drug targets using a pipeline based on a gene essentiality analysis of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215(3):403–410

    Article  Google Scholar 

  2. Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311

    Article  Google Scholar 

  3. Baldi P, Porta NL (2017) Xylella fastidiosa: host range and advance in molecular identification techniques. Front Plant Sci 8:1–22

    Article  Google Scholar 

  4. Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin JA (2017) Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun 8(1):1–13

    Article  Google Scholar 

  5. Bleve G, Gallo A, Altomare C, Vurro M, Maiorano G, Cardinali A, D’Antuono I, Marchi G, Mita G (2018) In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiol Lett 365(5):281

    Article  Google Scholar 

  6. Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T (2020) Network-based metabolism-centered screening of potential drug targets in Klebsiella pneumoniae at genome scale. Front Cell Infect Microbiol 9:447

    Article  Google Scholar 

  7. Chavarría M, Nikel PI, Pérez-pantoja D, Lorenzo VD, José S, Rica C (2013) The Entner - Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15(6):1772–1785

    Article  Google Scholar 

  8. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423

    Article  Google Scholar 

  9. Consortium TU (2020) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489

    Google Scholar 

  10. Dias O, Rocha I (2015) Systems biology in fungi. Molec Biol Food Water Borne Mycotoxigenic Mycotic Fungi, 69–92 (2015)

    Google Scholar 

  11. Dias O, Rocha M, Ferreira EC, Rocha I (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res 43(8):3899–3910

    Article  Google Scholar 

  12. Drossopoulos J, Niavis C (1988) Seasonal changes of the metabolites in the leaves, bark and xylem tissues of olive tree (olea europaea. l) i. nitrogenous compounds. Ann Botany 62(3):313–320

    Article  Google Scholar 

  13. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) Cobrapy: constraints-based reconstruction and analysis for python. BMC Syst Biol 7(1):1–6

    Article  Google Scholar 

  14. (EFSA), E.F.S.A (2018) Update of the Xylella spp . host plant database. Technical Report

    Google Scholar 

  15. Frese M, Schatschneider S, Voss J, Vorhölter FJ, Niehaus K (2014) Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris. Arch Biochem Biophys 546:53–63

    Article  Google Scholar 

  16. Gerlin L, Cottret L, Cesbron S, Taghouti G, Jacques MA, Genin S, Baroukh C (2020) Genome-scale investigation of the metabolic determinants generating bacterial fastidious growth. mSystems 5(2):1–15

    Article  Google Scholar 

  17. Giampetruzzi A, Saponari M, Almeida RPP, Essakhi S, Boscia D, Loconsole G, Saldarelli P (2017) Complete genome sequence of the olive-infecting strain Xylella fastidiosa subsp pauca De Donno. Genome Announc 5(27):5–6

    Article  Google Scholar 

  18. Kanehisa M (2002) The KEGG database. In: Novartis foundation symposium, pp 91–100

    Google Scholar 

  19. Killiny N, Hijaz F (2015) Chemical composition of xylem sap of citrus sinensis L . Osbeck (sweet orange). Proc Florida State Horticult Soc 128(1):114–118

    Google Scholar 

  20. Kim HU, Kim TY, Lee SY (2010) Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Molec BioSyst 6(2):339–348 (2010)

    Google Scholar 

  21. Kjøller larsen I, Sjöoberg BM, Thelander L (1982) Characterization of the active site of ribonucleotide reductase of Escherichia coli, bacteriophage T4 and mammalian cells by inhibition studies with Hydroxyurea Analogues. Eur J Biochem 125(1):75–81 (1982)

    Google Scholar 

  22. Leite B, Andersen PC, Ishida ML (2004) Colony aggregation and biofilm formation in xylem chemistry-based media for Xylella fastidiosa. FEMS Microbiol Lett 230(2):283–290

    Article  Google Scholar 

  23. Lemos EGDM, Alves LMC, Campanharo JC (2003) Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol Lett 219:39–45

    Google Scholar 

  24. Letisse F, Chevallereau P, Simon JL, Lindley ND (2001) Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl Microbiol Biotechnol 55:417–422

    Article  Google Scholar 

  25. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, König R, Smith RD, Palsson BØ (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Molec Syst Biol 6(1):390

    Article  Google Scholar 

  26. Malik-Sheriff RS, Glont M, Nguyen TV, Tiwari K, Roberts MG, Xavier A, Vu MT, Men J, Maire M, Kananathan S et al (2020) Biomodels-15 years of sharing computational models in life science. Nucleic Acids Res 48(D1):D407–D415

    Google Scholar 

  27. O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    Article  Google Scholar 

  28. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Molec Syst Biol 7(535):1–9

    Google Scholar 

  29. Ribeiro MDP, Dellias MTF, Tsai SM, Bolmströn A, Meinhardt LW, Bellato CM (2005) Utilization of the etest assay for comparative antibiotic susceptibility profiles of citrus variegated chlorosis and pierce’s disease strains of Xylella fastidiosa. Curr Microbiol 51:262–266

    Google Scholar 

  30. Palsson BØ (2006) Systems biology - properties of reconstructed networks

    Google Scholar 

  31. Presta L, Bosi E, Mansouri L, Dijkshoorn L, Fani R, Fondi M (2017) Constraint-based modeling identifies new putative targets to fight colistin-resistant A, baumannii infections. Sci Rep 7(1):3706

    Article  Google Scholar 

  32. Saponari M, Giampetruzzi A, Loconsole G, Boscia D, Saldarelli P (2018) Xylella fastidiosa in olive in Apulia: where we stand. In: Phytopathology, pp 1–43 (2018)

    Google Scholar 

  33. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, John Wilbur W, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 38(D1):5–16

    Article  Google Scholar 

  34. Schatschneider S, Persicke M, Watt SA, Hublik G, Pühler A, Niehaus K, Vorhölter FJ (2013) Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 167(2):123–134

    Article  Google Scholar 

  35. Vos S, Camilleri M, Diakaki M, Lázaro E, Parnell S, Schrader G, Vicent A (2019) Pest survey card on Xylella fastidiosa. EFSA Supporting Publications

    Google Scholar 

  36. Wells JM, Raju BC, Hung HY, Weisburg WG, Mandelco-Paul L, Brenner DJ (1987) Xylella fastidiosa gen. nov. , sp. nov: Gram-negative, xylem- limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37(2):136–143

    Google Scholar 

  37. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615

    Google Scholar 

  38. Zagallo AC, Wang CH (1967) Comparative glucose catabolism of Xanthomonas Species. J Bacteriol 93(3):970–975

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit. A. Oliveira (DFA/BD/10205/2020), E. Cunha (DFA/BD/8076/2020) hold a doctoral fellowship provided by the FCT. Oscar Dias acknowledge FCT for the Assistant Research contract obtained under CEEC Individual 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, A., Cunha, E., Silva, M., Faria, C., Dias, O. (2023). Exploring Xylella fastidiosa’s Metabolic Traits Using a GSM Model of the Phytopathogenic Bacterium. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Caraiman, S., Gil-González, A.B. (eds) Practical Applications of Computational Biology and Bioinformatics, 16th International Conference (PACBB 2022). PACBB 2022. Lecture Notes in Networks and Systems, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-031-17024-9_8

Download citation

Publish with us

Policies and ethics