Abstract
Xylella fastidiosa is a gram-negative phytopathogenic bacterium able to infect over 500 plant species, with devastating consequences for agricultural and forest-based economies. In the last decade, genome-scale metabolic (GSM) models have become important systems biology tools for studying the metabolic behaviour of different organisms. In this work, a GSM model of X. fastidiosa subsp. pauca De Donno is presented, comprising 1164 reactions, 1379 metabolites, and 508 genes. The model was validated by comparing in silico simulations with available experimental data. The GSM model allowed identifying potential drug targets using a pipeline based on a gene essentiality analysis of the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215(3):403–410
Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311
Baldi P, Porta NL (2017) Xylella fastidiosa: host range and advance in molecular identification techniques. Front Plant Sci 8:1–22
Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin JA (2017) Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun 8(1):1–13
Bleve G, Gallo A, Altomare C, Vurro M, Maiorano G, Cardinali A, D’Antuono I, Marchi G, Mita G (2018) In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiol Lett 365(5):281
Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T (2020) Network-based metabolism-centered screening of potential drug targets in Klebsiella pneumoniae at genome scale. Front Cell Infect Microbiol 9:447
Chavarría M, Nikel PI, Pérez-pantoja D, Lorenzo VD, José S, Rica C (2013) The Entner - Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15(6):1772–1785
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423
Consortium TU (2020) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489
Dias O, Rocha I (2015) Systems biology in fungi. Molec Biol Food Water Borne Mycotoxigenic Mycotic Fungi, 69–92 (2015)
Dias O, Rocha M, Ferreira EC, Rocha I (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res 43(8):3899–3910
Drossopoulos J, Niavis C (1988) Seasonal changes of the metabolites in the leaves, bark and xylem tissues of olive tree (olea europaea. l) i. nitrogenous compounds. Ann Botany 62(3):313–320
Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) Cobrapy: constraints-based reconstruction and analysis for python. BMC Syst Biol 7(1):1–6
(EFSA), E.F.S.A (2018) Update of the Xylella spp . host plant database. Technical Report
Frese M, Schatschneider S, Voss J, Vorhölter FJ, Niehaus K (2014) Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris. Arch Biochem Biophys 546:53–63
Gerlin L, Cottret L, Cesbron S, Taghouti G, Jacques MA, Genin S, Baroukh C (2020) Genome-scale investigation of the metabolic determinants generating bacterial fastidious growth. mSystems 5(2):1–15
Giampetruzzi A, Saponari M, Almeida RPP, Essakhi S, Boscia D, Loconsole G, Saldarelli P (2017) Complete genome sequence of the olive-infecting strain Xylella fastidiosa subsp pauca De Donno. Genome Announc 5(27):5–6
Kanehisa M (2002) The KEGG database. In: Novartis foundation symposium, pp 91–100
Killiny N, Hijaz F (2015) Chemical composition of xylem sap of citrus sinensis L . Osbeck (sweet orange). Proc Florida State Horticult Soc 128(1):114–118
Kim HU, Kim TY, Lee SY (2010) Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Molec BioSyst 6(2):339–348 (2010)
Kjøller larsen I, Sjöoberg BM, Thelander L (1982) Characterization of the active site of ribonucleotide reductase of Escherichia coli, bacteriophage T4 and mammalian cells by inhibition studies with Hydroxyurea Analogues. Eur J Biochem 125(1):75–81 (1982)
Leite B, Andersen PC, Ishida ML (2004) Colony aggregation and biofilm formation in xylem chemistry-based media for Xylella fastidiosa. FEMS Microbiol Lett 230(2):283–290
Lemos EGDM, Alves LMC, Campanharo JC (2003) Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol Lett 219:39–45
Letisse F, Chevallereau P, Simon JL, Lindley ND (2001) Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl Microbiol Biotechnol 55:417–422
Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, König R, Smith RD, Palsson BØ (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Molec Syst Biol 6(1):390
Malik-Sheriff RS, Glont M, Nguyen TV, Tiwari K, Roberts MG, Xavier A, Vu MT, Men J, Maire M, Kananathan S et al (2020) Biomodels-15 years of sharing computational models in life science. Nucleic Acids Res 48(D1):D407–D415
O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Molec Syst Biol 7(535):1–9
Ribeiro MDP, Dellias MTF, Tsai SM, Bolmströn A, Meinhardt LW, Bellato CM (2005) Utilization of the etest assay for comparative antibiotic susceptibility profiles of citrus variegated chlorosis and pierce’s disease strains of Xylella fastidiosa. Curr Microbiol 51:262–266
Palsson BØ (2006) Systems biology - properties of reconstructed networks
Presta L, Bosi E, Mansouri L, Dijkshoorn L, Fani R, Fondi M (2017) Constraint-based modeling identifies new putative targets to fight colistin-resistant A, baumannii infections. Sci Rep 7(1):3706
Saponari M, Giampetruzzi A, Loconsole G, Boscia D, Saldarelli P (2018) Xylella fastidiosa in olive in Apulia: where we stand. In: Phytopathology, pp 1–43 (2018)
Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, John Wilbur W, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 38(D1):5–16
Schatschneider S, Persicke M, Watt SA, Hublik G, Pühler A, Niehaus K, Vorhölter FJ (2013) Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 167(2):123–134
Vos S, Camilleri M, Diakaki M, Lázaro E, Parnell S, Schrader G, Vicent A (2019) Pest survey card on Xylella fastidiosa. EFSA Supporting Publications
Wells JM, Raju BC, Hung HY, Weisburg WG, Mandelco-Paul L, Brenner DJ (1987) Xylella fastidiosa gen. nov. , sp. nov: Gram-negative, xylem- limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37(2):136–143
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615
Zagallo AC, Wang CH (1967) Comparative glucose catabolism of Xanthomonas Species. J Bacteriol 93(3):970–975
Acknowledgements
This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit. A. Oliveira (DFA/BD/10205/2020), E. Cunha (DFA/BD/8076/2020) hold a doctoral fellowship provided by the FCT. Oscar Dias acknowledge FCT for the Assistant Research contract obtained under CEEC Individual 2018.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oliveira, A., Cunha, E., Silva, M., Faria, C., Dias, O. (2023). Exploring Xylella fastidiosa’s Metabolic Traits Using a GSM Model of the Phytopathogenic Bacterium. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Caraiman, S., Gil-González, A.B. (eds) Practical Applications of Computational Biology and Bioinformatics, 16th International Conference (PACBB 2022). PACBB 2022. Lecture Notes in Networks and Systems, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-031-17024-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-17024-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17023-2
Online ISBN: 978-3-031-17024-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)