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Abstract. Deep learning methods typically depend on the availability
of labeled data, which is expensive and time-consuming to obtain. Active
learning addresses such effort by prioritizing which samples are best to
annotate in order to maximize the performance of the task model. While
frameworks for active learning have been widely explored in the context
of classification of natural images, they have been only sparsely used in
medical image segmentation. The challenge resides in obtaining an uncer-
tainty measure that reveals the best candidate data for annotation. This
paper proposes Test-time Augmentation for Active Learning (TAAL),
a novel semi-supervised active learning approach for segmentation that
exploits the uncertainty information offered by data transformations.
Our method applies cross-augmentation consistency during training and
inference to both improve model learning in a semi-supervised fashion
and identify the most relevant unlabeled samples to annotate next. In
addition, our consistency loss uses a modified version of the JSD to fur-
ther improve model performance. By relying on data transformations
rather than on external modules or simple heuristics typically used in
uncertainty-based strategies, TAAL emerges as a simple, yet power-
ful task-agnostic semi-supervised active learning approach applicable to
the medical domain. Our results on a publicly-available dataset of car-
diac images show that TAAL outperforms existing baseline methods in
both fully-supervised and semi-supervised settings. Our implementation
is publicly available on https://github.com/melinphd/TAAL.

1 Introduction

The performance of deep learning-based models improves as the number of la-
beled training samples increases. Yet, the burden of annotation limits the amount
of data that can be labeled. One solution to that problem is offered by active
learning (AL) [1]. Based on the hypothesis that all data samples have a differ-
ent impact on training, active learning aims to find the best set of candidate
samples to annotate in order to maximize the performance of the task model.
In such context, medical image segmentation emerges as a remarkably relevant
task for active learning. Indeed, medical images typically require prior expert
knowledge for their analysis and annotation, an expensive and time-consuming
task. Initial attempts have explored active learning in medical imaging [2], but
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their methodology either relied on simple uncertainty heuristics [3,4] or required
heavy computations during sampling [5,6] or training [7].

Deep active learning Active learning has been extensively explored for the
classification [8,9,10,11,12,13] or segmentation [14,15,16] of natural images. Re-
cent deep active learning approaches based on entropy [12] or ensembles [9]
adapted traditional uncertainty-based AL strategies to deep learning models.
Similarly, DBAL [10] combined measures such as entropy or mutual information
with Monte-Carlo dropout to suggest which samples to annotate next. Core-
set selection [11] aimed to find the best batch sampling strategy for CNNs in
classification, but did not scale well to high-dimensional data.

The use of auxiliary modules [13,17,18] has been similarly explored to improve
AL sampling strategies. The loss prediction module of [13] measured model un-
certainty with intermediate representations. Likewise, a VAE was used in VAAL
[17] to learn the latent representation of the unlabeled dataset and distinguish
between labeled and unlabeled samples. While these state-of-the-art methods
have improved previous approaches, their dependence on auxiliary modules re-
duces their flexibility and increase the burden of hyperparameter tuning.

Semi-supervised AL Semi-supervised learning (SSL) exploits the represen-
tations of unlabeled data to improve the performance of the task model. Since
semi-supervised learning and active learning are closely connected, recent works
in AL have attempted to combine both domains [12,17,18,19]. For instance,
CEAL [12] used pseudo-labeling of unlabeled samples to enhance the labeled set
during training. VAAL [17] and TA-VAAL [18] employed a VAE to learn a latent
representation of labeled and unlabeled data. The Mean Teacher framework of
[19] combined a supervised loss on labeled data with an unsupervised loss on
unlabeled data based on Temporal Output Discrepancy (TOD), evaluating the
distance between the model’s output at different gradient steps. The model used
a variant of TOD at sampling time to identify the most uncertain samples to
annotate. However, these semi-supervised AL methods solely focused on clas-
sification tasks or the segmentation of natural images in very large quantities,
which is a different context than medical imaging. Another recent work com-
parable to ours combined AL and SSL via consistency regularization [20]. The
consistency loss adopted during training employed MixMatch [21] and sample
selection measured inconsistency across input perturbations. However, as op-
posed to our work, [20] kept the consistency loss used during training and the
AL inconsistency metric used for sample selection independent of each other,
and the latter was quantified through variance. Furthermore, the method was
only validated on classification tasks.

Test-time augmentation Data augmentation is a well-known regularization
technique to improve generalization in low-data regimes. These augmentation
techniques are particularly essential in medical imaging where datasets tend to
be smaller than those of natural images. Yet most recent attempts in active
learning do not exploit data augmentation during training [8,6], or only use
random horizontal flipping [17,18]. Recent learning methods [22,23] have also
investigated the use of augmentation at test-time in order evaluate prediction
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uncertainty. Randomly augmented test images yield different model outputs.
Combining these outputs can improve the overall predictions as well as generate
uncertainty maps for these predictions. Uncertainty estimated through test-time
augmentation was shown to be more reliable than model uncertainty measures
such as test-time dropout or entropy of the output [23].

Motivated by the limitations of current active learning methods for medical
image segmentation and the unused potential of active augmentation, this pa-
per proposes a novel semi-supervised active learning strategy called Test-time
Augmentation for Active Learning (TAAL).

Our contribution: Our method leverages the uncertainty information pro-
vided by data augmentation during both training and test-time sample selection
phases. More specifically, TAAL employs a cross-augmentation consistency loss
both to train the model in a semi-supervised fashion as well as to identify the
most uncertain samples to annotate at the next cycle. TAAL comprises three
key features:

1. a semi-supervised framework based on cross-augmentation consistency that
exploits unlabeled samples during training and sampling;

2. a flexible task-agnostic sample selection strategy based on test-time augmen-
tation;

3. a novel uncertainty measure based on a modified Jensen-Shannon divergence
(JSD), which accounts for both cross-augmentation consistency and predic-
tion entropy, and leads to improved performance.

2 Method

Cross-augmentation consistency training We consider a semi-supervised
setting where we train a multi-class segmentation model fθ(·) parameterized by
θ with N labeled samples and M unlabeled samples. We denote the labeled

set as DL = {(x(j),y(j))}Nj=1 and the unlabeled set as DU = {x(j)
u }Mj=1, with

data x,xu ∈ RH×W and segmentation mask y ∈ RC×H×W (C is the number of
classes).

The overall loss that we optimize, L = Ls + λLc, is a combination of a su-
pervised segmentation loss Ls and an unsupervised consistency loss Lc weighted
by a factor λ. More explicitly, the objective is defined as

L =
1

N

N∑
j=1

Ls
(
fθ(x

(j)),y(j)
)

+
λ

M

M∑
j=1

Lc
(
fθ(x

(j)
u ), Γ

)
, (1)

where Γ are the transformations applied to x
(j)
u . At each iteration, we apply a

series of random transformations {Γ1, ..., ΓK} to xu. Lc measures the variability
of segmentation predictions for different augmentations of xu measured by a
function Div:

Lc
(
fθ(x

(j)
u ), Γ

)
= Div

{
Γ−11 [fθ(Γ1(x(j)

u ))], ... , Γ−1K [fθ(ΓK(x(j)
u ))]

}
. (2)
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While different measures can be used for Div [24], our consistency loss builds
on the Jensen Shannon divergence (JSD),

JSD(P1, ..., PK) = H
( 1

K

K∑
i=i

Pi
)
− 1

K

K∑
i=i

H(Pi), (3)

where H(Pi) is the Shannon entropy [25] for the probability distributions Pi.
Minimizing the JSD reduces the entropy of the average prediction (making the
predictions more similar to each other) while increasing the average of individual
prediction entropies (ensuring confident predictions). In AL we typically want
to select samples which have a high output entropy [12]. Selecting samples with
highest JSD would thus have the opposite effect. To avoid this issue, and to
control the relative importance of average prediction entropy versus entropy of
individual predictions, we propose a weighted version of JSD with parameter α.

JSDα(P1, ..., PK) = αH
( 1

K

K∑
i=i

Pi
)
− (1−α)

K

K∑
i=i

H(Pi). (4)

Note that using α = 0.5 is equivalent to using the standard JSD.

Test-time augmentation sampling In active learning, the goal is to select
the best unlabeled samples to annotate after each training cycle to augment the
next labeled training set. Hence, after each cycle, we apply our active learning
strategy based on test-time augmentation to select the next samples to annotate.

For each sample xu ∈ DU , we apply a series of transformations {Γ ′1, . . . , Γ ′Ks
},

and we compute an uncertainty score UΓ ′ based on the same divergence function
as the consistency loss:

UΓ ′ = JSDα

(
Γ ′−11 [fθ(Γ

′
1(xu))], ... , Γ ′−1Ks

[fθ(Γ
′
Ks

(xu))]
)
. (5)

The samples with highest uncertainty are annotated and added to the labeled
training set. After sample selection, the model goes through a new training cycle.

3 Experiments and results

3.1 Implementation details

Dataset The publicly available ACDC dataset [26] comprises cardiac 3D cine-
MRI scans from 100 patients. These are evenly distributed into 5 groups (4
pathological and 1 healthy subjects groups).

Segmentation masks identify 4 regions of interest: right-ventricule cavity, left-
ventricule cavity, myocardium and background. For comparative purposes, our
experiments focus on the MRI scans at the end of diastole. Preprocessing of the
volumes includes resampling to a fixed 1.0 mm× 1.0 mm resolution in the x- and
y-directions as well as a 99th percentile normalization. The 3-dimensional dataset
of volumes are converted to a 2-dimensional dataset of images by extracting all
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the z-axis slices for each volume. Each image is downsampled to 128× 128 pixels.
Testing is performed on 181 images taken from 20 different patients, ensuring
subjects are not split up across training and testing sets. The validation uses 100
randomly selected images. The same validation set is used for all experiments.
In total, the available training set, both labeled and unlabeled, thus comprises
660 images.

Implementation and training We employ a standard 4-layer UNet [27] for
our backbone segmentation model with dropout (p = 0.5), batch normalization
and a leaky ReLU activation function. For a fairer comparison in our experi-
ments, we keep the number of training steps fixed during all cycles. We train
our models for 75 epochs, each iterating over 250 batches, with BS = 4. We
use the Adam optimizer [28], with LR = 10−6 and weight decay w = 10−4.
To improve convergence, we apply a gradual warmup with a cosine annealing
scheduler [29,30], increasing the learning rate by a factor 200 during the first
10 epochs. During training, we apply data augmentation, using transformations
similar to those utilized for the consistency loss.

In this work, we model the transformations Γ as a combination of f , r and ε,
where f is the random variable for flipping the image along the horizontal axis,
r is the number of 90◦ rotations in 2D, and ε models Gaussian noise. We set
f ∼ U(0, 1), r ∼ U(0, 3) and ε ∼ N (0, 0.01), and use K = 3 transformations to
compute the consistency loss during training.

We use the standard Dice loss as our supervised loss. In the semi-supervised
case, following [31], we ramp-up the unsupervised component weight using a
Gaussian ramp-up curve such that λ = exp(−5(1−t/tR)2), where t is the current
epoch. We use a ramp-up length tR of 10 epochs, corresponding to the learning
rate gradual warmup length.

We repeat each experiment 5 times, each with a different seed determining
different initialization of our model weights. For all experiments, the same initial
labeled set is used for the first cycle. Experiments were run on NVIDIA PV100
GPU with CUDA 10.2 and Python 3.8.10. We implemented the methods using
the PyTorch framework.

Evaluation metrics To evaluate the performance of the trained models, we
employ the standard Dice similarity score, averaged over all non-background
channels. We compute both the mean 3D Dice on test volumes and mean 2D
Dice on the individual images from these volumes. We give the results as the
mean Dice obtained over the repeated experiments.

3.2 Active learning setup

We begin each experiment with 10 labeled samples chosen uniformly at random
in the training set and use a sampling budget of 1, meaning that we select one
new sample to be labeled after each cycle. Following previous active learning
validation settings [11], we retrain the model from scratch after each annotation
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cycle. We use the same types of augmentations during training and sample se-
lection. For test-time augmentation (TTA) sampling, {Γ ′1, . . . , Γ ′Ks

} comprises
all 8 combinations of flip and rotation augmentations, in order to apply similar
transformations to all images, and adopts the same augmentation Gaussian noise
parameters as for training. For comparative purposes, with dropout-based sam-
pling, we also run 8 inferences with dropout to obtain different predictions. Both
TTA and dropout-based sampling then evaluate uncertainty with UΓ ′ computed
on the different generated predictions. We set α = 0.75 in TAAL’s weighted
JSD.

3.3 Comparison of active learning strategies

Our aim is to evaluate the effectiveness of our proposed semi-supervised active
learning approach on a medical image segmentation task. In our active learning
experiments, we compare TAAL and its unweighted version (with standard JSD)
with random sampling, entropy sampling, sampling based on dropout and core-
set selection. Entropy-based sampling selects the most uncertain samples based
on the entropy of the output probabilities. Dropout-based sampling [10] identifies
the samples with the highest JSD given multiple inferences with dropout. Finally,
core-set selection [11] aims to obtain the most diverse labeled set by solving the
maximum cover-set problem.

Fig. 1: Active learning results on the ACDC dataset, given as the mean 3D
Dice scores on the test set and corresponding 95% confidence interval. In a
fully-supervised setting: random sampling (RS), core-set selection (Coreset),
uncertainty-based sampling based on entropy of output probabilities (Entropy),
and uncertainty-based sampling based on JSD given multiple inferences with
dropout (Dropout). In a semi-supervised setting: random sampling (Semi + RS),
TAAL with standard JSD (unweighted TAAL), and TAAL with weighted JSD
(TAAL). Our approach TAAL demonstrates significant improvements for low-
data regimes in both fully and semi-supervised segmentation.
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Figure 1 shows the segmentation performance of our proposed method with
its 2 variants along with other existing active learning methods. TAAL consis-
tently outperforms the other baselines by a large margin. We observe that our
semi-supervised approach based on cross-augmentation consistency (Semi + RS)
noticeably improves the fully-supervised vanilla model (RS). We notice that our
unweighted version of TAAL (with standard JSD, α=0.5) already improves the
performance of the semi-supervised model (Semi + RS) by selecting the most un-
certain samples based on their cross-augmentation consistency loss. With higher
α=0.75, our proposed TAAL with weighted JSD yields the highest performance
gain compared to the fully-supervised vanilla model with random sampling (RS).

(a) 1st Cycle (b) 2nd Cycle (c) 3rd Cycle (d) 4th Cycle

Fig. 2: Examples of images sampled by TAAL at different AL cycles. Are depicted
the image sampled (row 1), the ground-truth segmentation (row 2), the segmen-
tation prediction (row 3), and the JSD map given the different predictions from
the augmented image (row 4). We observe that TAAL initially selected images
with a large amount of hallucinated inaccurate predictions.
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Figure 2 shows examples of images sampled by TAAL during the first 4 an-
notation cycles. TAAL initially selects image slices which show the apex of the
heart. These samples are more difficult to learn in early stages since the areas to
segment are much smaller than in the central slices of the heart and the image
qualities are typically of lesser quality due to partial volume effects. Thus, we
see that the choice of TAAL is first directed at samples yielding highly inac-
curate predictions. The previous model has in fact even hallucinated multiple
false segmentations for these samples as seen on the third row of subfigures 2a
and 2b. In the next cycles, TAAL selects more central cardiac slices, which have
improved predictions when compared to the ground-truth annotations. Hence,
TAAL seems to first focus on correcting inaccurate predictions, before sharpen-
ing its predictions on a fine-grained level for slices with more prominent areas
to segment.

Table 1: Active learning performances after doubling the number of initial
labeled samples. We show the mean 2D and mean 3D Dice scores. ‘Fully’:
Fully-supervised vanilla UNet. ‘Semi’: Proposed semi-supervised training with
standard (α = 0.5) or weighted (α = 0.75) JSD. ‘RS’: Random sampling.
‘TTA’: Sampling with Test-time augmentation. ‘unweighted TAAL’: Our pro-
posed method with standard JSD. ‘TAAL’: Our proposed method with weighted
JSD, which finds the best candidate image to annotate.

Metric
Fully Semi (α = 0.5) Semi (α = 0.75)

RS Coreset Entropy Dropout TTA RS unweighted TAAL TAAL

2D Dice 80.69 79.95 80.99 81.32 81.67 81.51 81.90 82.51
3D Dice 87.40 86.65 88.07 88.24 88.48 88.48 88.50 89.06

Table 1 gathers the model’s segmentation performance after 10 cycles in
terms of mean 2D Dice and mean 3D Dice scores over whole test volumes. In
the fully-supervised setting, test-time augmentation-based sampling (TTA) out-
performs random sampling, core-set selection, entropy sampling and sampling
based on dropout. Similarly, unweighted TAAL and TAAL outperform random
sampling in both semi-supervised and fully-supervised settings. After labeling
10 extra samples, the mean 3D Dice score attains 89.06% with TAAL while
only reaching respectively 87.40% and 88.48% with random sampling in fully-
and semi-supervised settings. Similar results were observed with 2D Dice on test
images.

4 Conclusion

In this paper, we presented a simple, yet effective semi-supervised deep active
learning approach for medical image segmentation. Our method, Test-time Aug-
mentation for Active Learning (TAAL), employs a cross-augmentation consis-
tency framework that produces both an improved training due to its unsuper-
vised consistency loss, and a better sampling method through the uncertainty
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measure it provides. TAAL also uses a modified JSD that significantly improves
the model’s performance. Our results on the ACDC cardiac segmentation dataset
show that, with TAAL, the trained model can reach up to 89.06% 3D Dice
with 20 labeled samples when it only reaches 87.40% with random sampling.
Because our approach exploits standard augmentation techniques already used
in medical image segmentation tasks, TAAL emerges as a simple, yet efficient
semi-supervised active learning strategy. While our method highly depends on
the presence of disagreeing predictions for augmented inputs to identify the
most informative samples, our observed improvements on a cardiac MRI dataset
highlight promising avenues for future work, notably the investigation of more
complex datasets and types of augmentations.
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