Skip to main content

Continuous Longitudinal Fetus Brain Atlas Construction via Implicit Neural Representation

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13575))

  • 733 Accesses

Abstract

Longitudinal fetal brain atlas is a powerful tool for understanding and characterizing the complex process of fetus brain development. Existing fetus brain atlases are typically constructed by averaged brain images on discrete time points independently over time. Due to the differences in onto-genetic trends among samples at different time points, the resulting atlases suffer from temporal inconsistency, which may lead to estimating error of the brain developmental characteristic parameters along the timeline. To this end, we proposed a multi-stage deep-learning framework to tackle the time inconsistency issue as a 4D (3D brain volume + 1D age) image data denoising task. Using implicit neural representation, we construct a continuous and noise-free longitudinal fetus brain atlas as a function of the 4D spatial-temporal coordinate. Experimental results on two public fetal brain atlases (CRL and FBA-Chinese atlases) show that the proposed method can significantly improve the atlas temporal consistency while maintaining good fetus brain structure representation. In addition, the continuous longitudinal fetus brain atlases can also be extensively applied to generate finer 4D atlases in both spatial and temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, D., Hill, D.L., Stoyle, P.N., Summers, P.E., Keevil, S.F.: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans. Med. Imaging 16(6), 903–910 (1997)

    Article  Google Scholar 

  2. Chen, L., et al.: Construction of longitudinally consistent 4D infant cerebellum atlases based on deep learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 139–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_14

    Chapter  Google Scholar 

  3. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  4. Habas, P.A., et al.: A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53(2), 460–470 (2010)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  7. Huang, T., Li, S., Jia, X., Lu, H., Liu, J.: Neighbor2neighbor: self-supervised denoising from single noisy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14781–14790 (2021)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Krull, A., Buchholz, T.O., Jug, F.: Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  11. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  12. Liu, X., Niethammer, M., Kwitt, R., Singh, N., McCormick, M., Aylward, S.: Low-rank atlas image analyses in the presence of pathologies. IEEE Trans. Med. Imaging 34(12), 2583–2591 (2015)

    Article  Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  14. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8(1), 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  15. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)

    Google Scholar 

  16. Righini, A., et al.: Hippocampal infolding angle changes during brain development assessed by prenatal MR imaging. Am. J. Neuroradiol. 27(10), 2093–2097 (2006)

    Google Scholar 

  17. Sadri, A.R., et al.: MRQY-an open-source tool for quality control of MR imaging data. Med. Phys. 47(12), 6029–6038 (2020)

    Article  Google Scholar 

  18. Serag, A., et al.: A multi-channel 4d probabilistic atlas of the developing brain: application to fetuses and neonates. Ann. BMVA 2012(3), 1–14 (2012)

    Google Scholar 

  19. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  20. Tilea, B., et al.: Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet. Gynecol. 33(2), 173–181 (2009)

    Article  Google Scholar 

  21. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  22. Wu, J., et al.: Age-specific structural fetal brain atlases construction and cortical development quantification for Chinese population. NeuroImage 241, 118412 (2021) https://doi.org/10.1016/j.neuroimage.2021.118412, https://www.sciencedirect.com/science/article/pii/S105381192100687X

  23. Wu, Q., et al.: IREM: high-resolution magnetic resonance image reconstruction via implicit neural representation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 65–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_7

    Chapter  Google Scholar 

  24. Zhang, Y., et al.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE Trans. Med. Imaging 35(12), 2568–2577 (2016)

    Article  Google Scholar 

  25. Zhao, F., Wu, Z., Wang, L., Lin, W., Xia, S., Li, G.: Learning 4D infant cortical surface atlas with unsupervised spherical networks. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 262–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Wu, J., Wu, Q., Wei, H., Zhang, Y. (2022). Continuous Longitudinal Fetus Brain Atlas Construction via Implicit Neural Representation. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2022. Lecture Notes in Computer Science, vol 13575. Springer, Cham. https://doi.org/10.1007/978-3-031-17117-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17117-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17116-1

  • Online ISBN: 978-3-031-17117-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics