Skip to main content

Automated Multi-class Fetal Cardiac Vessel Segmentation in Aortic Arch Anomalies Using T2-Weighted 3D Fetal MRI

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2022)

Abstract

Congenital heart disease (CHD) encompasses a range of cardiac malformations present from birth, representing the leading congenital diagnosis. 3D volumetric reconstructions of T2w black blood fetal MRI provide optimal vessel visualisation, supporting prenatal CHD diagnosis, a key step for optimal patient management. We present a framework for automated multi-class fetal vessel segmentation in the setting where binary manual labels of the vessels region of interest (ROI) are available for training, as well as a multi-class labelled atlas.

We combine deep learning label propagation from multi-class labelled condition-specific atlases with 3D Attention U-Net segmentation to achieve the desired multi-class output. We train a single network to segment 12 fetal cardiac vessels for three distinct aortic arch anomalies (double aortic arch, right aortic arch, and suspected coarctation of the aorta). Our segmentation network is trained by combination of a multi-class loss, which uses the propagated multi-class labels; and a binary loss which uses binary labels generated by expert clinicians.

Our proposed method outperforms label propagation in accuracy of vessel segmentation, while succeeding in segmenting the anomaly area of all three CHD diagnoses included, achieving a 100% vessel detection rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gin.g-node.org/SVRTK/.

  2. 2.

    https://github.com/Project-MONAI/MONAI/.

References

  1. Arafati, A., et al.: Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc. Diagn. Ther. 9(Suppl 2), S310 (2019)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Dinsdale, N.K., Jenkinson, M., Namburete, A.I.L.: Spatial warping network for 3D segmentation of the hippocampus in MR images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 284–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_32

    Chapter  Google Scholar 

  4. Grigorescu, I., et al.: Diffusion tensor driven image registration: a deep learning approach. In: Špiclin, Ž, McClelland, J., Kybic, J., Goksel, O. (eds.) WBIR 2020. LNCS, vol. 12120, pp. 131–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50120-4_13

    Chapter  Google Scholar 

  5. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  6. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  7. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  8. Lloyd, D.F., et al.: Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. The Lancet 393(10181), 1619–1627 (2019)

    Article  Google Scholar 

  9. Mendis, S., Puska, P., Norrving, B., Organization, W.H., et al.: Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization (2011)

    Google Scholar 

  10. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  11. Pace, D.F., et al.: Iterative segmentation from limited training data: applications to congenital heart disease. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 334–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_38

    Chapter  Google Scholar 

  12. Peng, J., Wang, Y.: Medical image segmentation with limited supervision: a review of deep network models. IEEE Access 9, 36827–36851 (2021)

    Article  Google Scholar 

  13. Rezaei, M., Yang, H., Meinel, C.: Whole heart and great vessel segmentation with context-aware of generative adversarial networks. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2018. I, pp. 353–358. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56537-7_89

    Chapter  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 720–724. IEEE (2018)

    Google Scholar 

  16. Sinclair, M., et al.: Atlas-ISTN: joint segmentation, registration and atlas construction with image-and-spatial transformer networks. Med. Image Anal. 78, 102383 (2022)

    Article  Google Scholar 

  17. Uus, A., et al.: 3D UNet with GAN discriminator for robust localisation of the fetal brain and trunk in MRI with partial coverage of the fetal body. BioRxiv (2021)

    Google Scholar 

  18. Uus, A., et al.: 3D MRI atlases of congenital aortic arch anomalies and normal fetal heart: application to automated multi-label segmentation. BioRxiv (2022)

    Google Scholar 

  19. Uus, A., et al.: Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI. IEEE Trans. Med. Imaging 39(9), 2750–2759 (2020)

    Article  Google Scholar 

  20. Xu, Z., Niethammer, M.: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 420–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47

    Chapter  Google Scholar 

  21. Yu, L., Yang, X., Qin, J., Heng, P.-A.: 3D FractalNet: dense volumetric segmentation for cardiovascular MRI volumes. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 103–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_10

    Chapter  Google Scholar 

  22. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  23. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding from the EPSRC Centre for Doctoral Training in Smart Medical Imaging (EP/S022104/1).

We thank everyone who was involved in the acquisition and examination of the datasets and all participating mothers. This work was supported by the Rosetrees Trust [A2725], the Wellcome/EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z], the Wellcome Trust and EPSRC IEH award [102431] for the iFIND project, the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’ and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Ramirez Gilliland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramirez Gilliland, P. et al. (2022). Automated Multi-class Fetal Cardiac Vessel Segmentation in Aortic Arch Anomalies Using T2-Weighted 3D Fetal MRI. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2022. Lecture Notes in Computer Science, vol 13575. Springer, Cham. https://doi.org/10.1007/978-3-031-17117-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17117-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17116-1

  • Online ISBN: 978-3-031-17117-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics