Skip to main content

An Adversarial Approach for Unsupervised Syntax-Guided Paraphrase Generation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13551))

  • 2780 Accesses

Abstract

Paraphrase generation has consistently been a challenging area in the field of NLP. Despite the considerable achievements made by previous research, existing supervised approaches require many annotated paraphrase pairs which are expensive to collect. On the other hand, unsupervised paraphrasing manners usually generate syntactically similar output compared with the source text and lack diversity in grammatical structure. To tangle this challenge, we propose a Transformer-based model applying an Adversarial approach for Unsupervised Syntax-Guided Paraphrase Generation (AUSPG). AUSPG is based on a combination of syntax discriminator and Transformer framework to paraphrase sentences from disentangled semantic and syntactic spaces without the need for annotated pairs. More specifically, we deploy a Transformer encoder without position embedding to obtain semantic representations. The syntax discriminator is utilized to further regularize the semantic space. In addition, the disentanglement enables AUSPG to manipulate the embedding of syntactic space to generate syntax-guided paraphrases. Finally, we conduct extensive experiments to substantiate the validity and effectiveness of our proposal. The results reveal that AUSPG significantly outperforms the existing baselines and generates more diverse paraphrase sentences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/pytorch/fairseq/tree/main/examples/wmt21.

References

  1. Banerjee, S., Lavie, A.: Meteor: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization (2005)

    Google Scholar 

  2. Bao, Y., et al: Generating sentences from disentangled syntactic and semantic spaces. In: Proceedings of ACL (2019)

    Google Scholar 

  3. Barzilay, R., Lee, L.: Learning to paraphrase: an unsupervised approach using multiple-sequence alignment. In: Proceedings of NAACL (2003)

    Google Scholar 

  4. Bowman, S., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of CoNLL (2016)

    Google Scholar 

  5. Chen, M., Tang, Q., Wiseman, S., Gimpel, K.: Controllable paraphrase generation with a syntactic exemplar. In: Proceedings of ACL (2019)

    Google Scholar 

  6. Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora: exploiting massively parallel news sources. In: Proceedings of COLING (2004)

    Google Scholar 

  7. Egonmwan, E., Chali, Y.: Transformer and seq2seq model for paraphrase generation. In: Proceedings of the 3rd Workshop on Neural Generation and Translation (2019)

    Google Scholar 

  8. Fu, Y., Feng, Y., Cunningham, J.P.: Paraphrase generation with latent bag of words. Proceedings of NeurIPS (2019)

    Google Scholar 

  9. Gao, S., Zhang, Y., Ou, Z., Yu, Z.: Paraphrase augmented task-oriented dialog generation. In: Proceedings of ACL (2020)

    Google Scholar 

  10. Goyal, T., Durrett, G.: Neural syntactic preordering for controlled paraphrase generation. In: Proceedings of ACL (2020)

    Google Scholar 

  11. Hu, J.E., Rudinger, R., Post, M., Van Durme, B.: ParaBank: monolingual bitext generation and sentential paraphrasing via lexically-constrained neural machine translation. In: Proceedings of AAAI (2019)

    Google Scholar 

  12. Huang, K.H., Chang, K.W.: Generating syntactically controlled paraphrases without using annotated parallel pairs. In: Proceedings of EACL (2021)

    Google Scholar 

  13. Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of NAACL (2018)

    Google Scholar 

  14. Kauchak, D., Barzilay, R.: Paraphrasing for automatic evaluation. In: Proceedings of AACL (2006)

    Google Scholar 

  15. Kumar, A., Ahuja, K., Vadapalli, R., Talukdar, P.: Syntax-guided controlled generation of paraphrases. Trans. Assoc. Comput. Linguist. (2020)

    Google Scholar 

  16. Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., Gao, J.: Deep reinforcement learning for dialogue generation. In: EMNLP (2016)

    Google Scholar 

  17. Li, Z., Jiang, X., Shang, L., Li, H.: Paraphrase generation with deep reinforcement learning. In: Proceedings of EMNLP (2018)

    Google Scholar 

  18. Lin, Z., Wan, X.: Pushing paraphrase away from original sentence: a multi-round paraphrase generation approach. In: Proceedings of ACL Findings (2021)

    Google Scholar 

  19. Liu, X., Mou, L., Meng, F., Zhou, H., Zhou, J., Song, S.: Unsupervised paraphrasing by simulated annealing. In: Proceedings of ACL (2020)

    Google Scholar 

  20. Ma, S., Sun, X., Wang, Y., Lin, J.: Bag-of-words as target for neural machine translation. In: Proceedings of ACL (2018)

    Google Scholar 

  21. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation metrics for paraphrase identification. In: Proceedings of NAACL (2012)

    Google Scholar 

  22. Mallinson, J., Sennrich, R., Lapata, M.: Paraphrasing revisited with neural machine translation. In: Proceedings of EACL (2017)

    Google Scholar 

  23. McKeown, K.: Paraphrasing questions using given and new information. Am. J. Comput. Linguist. (1983)

    Google Scholar 

  24. Meng, Y., et al.: ConRPG: paraphrase generation using contexts as regularizer. In: Proceedings of EMNLP (2021)

    Google Scholar 

  25. Prakash, A., et al.: Neural paraphrase generation with stacked residual LSTM networks. In: Proceedings of COLING (2016)

    Google Scholar 

  26. Qian, L., Qiu, L., Zhang, W., Jiang, X., Yu, Y.: Exploring diverse expressions for paraphrase generation. In: Proceedings of EMNLP (2019)

    Google Scholar 

  27. Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with recurrent neural networks. In: Proceedings of ICLR (2016)

    Google Scholar 

  28. Roy, A., Grangier, D.: Unsupervised paraphrasing without translation. In: Proceedings of ACL (2019)

    Google Scholar 

  29. Siddique, A., Oymak, S., Hristidis, V.: Unsupervised paraphrasing via deep reinforcement learning. In: Proceedings of KDD (2020)

    Google Scholar 

  30. Sun, J., Ma, X., Peng, N.: Aesop: Paraphrase generation with adaptive syntactic control. In: Proceedings of EMNLP (2021)

    Google Scholar 

  31. Tao, C., Gao, S., Li, J., Feng, Y., Zhao, D., Yan, R.: Learning to organize a bag of words into sentences with neural networks: an empirical study. In: Proceedings of NAACL (2021)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS (2017)

    Google Scholar 

  33. Wieting, J., Gimpel, K.: Paranmt-50m: pushing the limits of paraphrastic sentence embeddings with millions of machine translations. In: Proceedings of ACL (2018)

    Google Scholar 

  34. Witteveen, S., Andrews, M.: Paraphrasing with large language models. In: Proceedings of the 3rd Workshop on Neural Generation and Translation (2019)

    Google Scholar 

  35. Wubben, S., Van Den Bosch, A., Krahmer, E.: Paraphrase generation as monolingual translation: Data and evaluation. In: Proceedings of the 6th International Natural Language Generation Conference (2010)

    Google Scholar 

  36. Yang, X., Liu, Y., Xie, D., Wang, X., Balasubramanian, N.: Latent part-of-speech sequences for neural machine translation. In: Proceedings of EMNLP (2019)

    Google Scholar 

  37. Yuan, W., Ding, L., Meng, K., Liu, G.: Text generation with syntax - enhanced variational autoencoder. In: International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China, 18–22 July 2021, pp. 1–8. IEEE (2021). https://doi.org/10.1109/IJCNN52387.2021.9533865

  38. Zhang, X., Yang, Y., Yuan, S., Shen, D., Carin, L.: Syntax-infused variational autoencoder for text generation. In: Proceedings of ACL (2019)

    Google Scholar 

  39. Zhao, S., Meng, R., He, D., Saptono, A., Parmanto, B.: Integrating transformer and paraphrase rules for sentence simplification. In: Proceedings of EMNLP (2018)

    Google Scholar 

  40. Zhao, S., Wang, H., Lan, X., Liu, T.: Leveraging multiple MT engines for paraphrase generation. In: Proceedings of COLING (2010)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U21B2020). Gongshen Liu is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongshen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, T., Zhao, Y., Liu, G., Li, X. (2022). An Adversarial Approach for Unsupervised Syntax-Guided Paraphrase Generation. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13551. Springer, Cham. https://doi.org/10.1007/978-3-031-17120-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17120-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17119-2

  • Online ISBN: 978-3-031-17120-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics