Skip to main content

KBRTE: A Deep Learning Model for Chinese Textual Entailment Recognition Based on Synonym Expansion and Sememe Enhancement

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13551))

  • 2777 Accesses

Abstract

The mainstream textual entailment recognition models ignore the existing language knowledge, so the inference knowledge from the training data is limited, and the generalization ability is not strong. Therefore, this paper proposes a model KBRTE (fusing Knowledge Base in RTE) that combines an attention mechanism and a pre-trained model and uses word vectors based on sememe representation in the HowNet. We use the enhanced CNLI and XNLI datasets as the model’s training set. On the basis of these datasets, monosemous and polysemous in the CiLin are integrated to further enhance the knowledge. Experimental results show that this method could bring significant gains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ltp-cloud.com/download.

  2. 2.

    http://www.cips-cl.org/static/CCL2018/call-evaluation.html#task3.

  3. 3.

    https://cims.nyu.edu/~sbowman/xnli/.

References

  1. Lan, W., Xu, W.: Neural network models for paraphrase identification, semantic textual similarity, natural language inference, and question answering. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3890–3902 (2018)

    Google Scholar 

  2. Li, S., Li H., Zhao Q.: Chinese textual entailment recognition fused with external semantic knowledge. Comput. Eng. 47(1), 44–49 (2021). https://doi.org/10.19678/j.issn.1000-3428.0056841

  3. Miller, George, A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Google Scholar 

  4. Dong, Z., Dong, Q.: HowNet - a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, pp. 820–824 (2003)

    Google Scholar 

  5. Mei, J., Zhu, Y., Gao, Y.: TongYiCi CiLin.: Shanghai Lexicographical Publishing House (1983)

    Google Scholar 

  6. Liu, Y., Mu, L., Zan, H.: A deep learning model fused with word sense knowledge for textual entailment recognition. In: International Conference on Asian Language Processing (IALP), pp. 189–194. IEEE (2021)

    Google Scholar 

  7. Parikh, A., Tckstrm, O., Uszkoreit, J.: A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933 (2016)

  8. Chen, Q., Zhu, X., Ling, Z.: Enhanced LSTM for natural language inference. arXiv preprint arXiv:1609.06038 (2016)

  9. Hu, C., Wu, C., Yang, Y.: Extended S-LSTM based textual entailment recognition. J. Comput. Res. Develop. 57(7), 1481–1489 (2020)

    Google Scholar 

  10. Huang, S., Xiao, S., Du, Y.: Chinese textual entailment recognition method based on hybrid attention. J. Beijing Univ. Inf. Technol. 35(3), 89–93.98 (2020). https://doi.org/10.16508/j.cnki.11-5866/n.2020.03.017

  11. Devlin, J., Chang, M., Lee, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Cui, Y., Che, W., Liu, T.: Pre-training with whole word masking for Chinese BERT. IEEE/ACM Trans. Audio Speech Lang. Process, 29, 3504–3514 (2021)

    Article  Google Scholar 

  13. Liu, X., He, P., Chen, W.: Multi-task deep neural networks for natural language understanding. arXiv preprint arXiv:1901.11504 (2019)

  14. Conneau, A., Khandelwal, K., Goyal, N.: Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116 (2019)

  15. Artetxe, M., Ruder, S., Yogatama, D.: On the cross-lingual transferability of monolingual representations. arXiv preprint arXiv:1911.02116 (2019)

  16. Qian, C., Zhu, X., Ling, Z.: Neural natural language inference models enhanced with external knowledge. arXiv preprint arXiv:1711.04289 (2017)

  17. Niu, Y., Xie, R., Liu, Z.: IMproved word representation learning with sememes. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 2049–2058 (2017)

    Google Scholar 

  18. Yu, Q., Wang, B., Liu, M.: A fine-tuning method based on Tongyi CiLin and pre-trained word embedding. Chinese J. Inf. 34(10), 27–32 (2020)

    Google Scholar 

  19. Zhang, Z., Zeng, Y., Pang, Y.: A Chinese textual entailment recognition method incorporating semantic role and self-attention. J. Electron. 48(11), 2162–2169 (2020)

    Google Scholar 

  20. Wang, H.: Text entailment recognition based on integration of language knowledge and deep learning and its application. Harbin Institute of Technology (2019)

    Google Scholar 

Download references

Acknowledgment

We are very grateful to the anonymous reviewers for their constructive opinions, the Science and Technique Program of Henan Province under Grant No. 192102210260, and the Teaching Reform Program of Zhengzhou University under Grant No. 2021ZZUJGLX131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Mu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Mu, L., Zan, H. (2022). KBRTE: A Deep Learning Model for Chinese Textual Entailment Recognition Based on Synonym Expansion and Sememe Enhancement. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13551. Springer, Cham. https://doi.org/10.1007/978-3-031-17120-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17120-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17119-2

  • Online ISBN: 978-3-031-17120-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics