Skip to main content

Random Concatenation: A Simple Data Augmentation Method for Neural Machine Translation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13551))

  • 2878 Accesses

Abstract

Neural machine translation system heavily depends on large-scale parallel corpus, which is not available for some low-resource languages, resulting in poor translation quality. To alleviate such data hungry problem, we present a high quality data augmentation method which merely utilize the given parallel corpus. Specifically, we propose to augment the low-resource parallel corpus with a language-mixed bitext, which is simply built by concatenating two sentences in different languages. Furthermore, our approach which only takes advantage of parallel corpus is supplementary to existing data manipulation strategies, i.e. back-translation, self-training and knowledge distillation. Experiments on several low-resource datasets show that our approach achieves significant improvement over a strong baseline, despite its simplicity.

This work was supported by Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://workshop2014.iwslt.org/.

  2. 2.

    http://www.statmt.org/wmt16/.

  3. 3.

    https://www.statmt.org/wmt21/unsup_and_very_low_res.html.

  4. 4.

    https://github.com/pytorch/fairseq.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR, vol. abs/1409.0473 (2015)

    Google Scholar 

  2. Brown, P.F., et al.: A statistical approach to machine translation. Comput. Linguist. 16(2), 79–85 (1990)

    Google Scholar 

  3. Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Mercer, R.L.: The mathematics of statistical machine translation: Parameter estimation. Comput. Linguist. 19(2), 263–311 (1993)

    Google Scholar 

  4. Chen, Y., Liu, Y., Li, V.O.: Zero-resource neural machine translation with multi-agent communication game. In: AAAI, pp. 5086–5093 (2018)

    Google Scholar 

  5. Cheng, Y., Liu, Y., Yang, Q., Sun, M., Xu, W.: Neural machine translation with pivot languages. arXiv preprint arXiv:1611.04928 (2016)

  6. Cohn, T., Hoang, C.D.V., Vymolova, E., Yao, K., Dyer, C., Haffari, G.: Incorporating structural alignment biases into an attentional neural translation model. In: NAACL-HLT, pp. 876–885 (2016)

    Google Scholar 

  7. Conneau, A., Lample, G.: Cross-lingual language model pretraining. In: NeurIPS, pp. 7059–706 (2019)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  9. Ding, L., Wu, D., Tao, D.: Improving neural machine translation by bidirectional training. In: EMNLP, pp. 3278–3284 (2021)

    Google Scholar 

  10. Edunov, S., Ott, M., Auli, M., Grangier, D., Ranzato, M.: Classical structured prediction losses for sequence to sequence learning. In: NAACL-HLT, pp. 355–364 (2018)

    Google Scholar 

  11. He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.Y., Ma, W.Y.: Dual learning for machine translation. In: NeurIPS. vol. 29, pp. 820–828 (2016)

    Google Scholar 

  12. He, J., Gu, J., Shen, J., Ranzato, M.: Revisiting self-training for neural sequence generation. In: ICLR (2020)

    Google Scholar 

  13. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. CoRR abs/1503.02531 (2015)

    Google Scholar 

  14. Kim, Y., Rush, A.M.: Sequence-level knowledge distillation. In: EMNLP, pp. 1317–1327 (2016)

    Google Scholar 

  15. Koehn, P., Knowles, R.: Six challenges for neural machine translation. In: NMT@ACL, pp. 28–39 (2017)

    Google Scholar 

  16. Kondo, S., Hotate, K., Hirasawa, T., Kaneko, M., Komachi, M.: Sentence concatenation approach to data augmentation for neural machine translation. In: NAACL-HLT (Student Research Workshop), pp. 143–149 (2021)

    Google Scholar 

  17. Lample, G., Conneau, A., Denoyer, L., Ranzato, M.: Unsupervised machine translation using monolingual corpora only. In: ICLR (2018)

    Google Scholar 

  18. Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., Zettlemoyer, L.: Multilingual denoising pre-training for neural machine translation. Trans. Assoc. Comput. Linguist. 8, 726–742 (2020)

    Article  Google Scholar 

  19. Nguyen, X.P., Joty, S.R., Wu, K., Aw, A.T.: Data diversification: a simple strategy for neural machine translation. In: NeurIPS (2020)

    Google Scholar 

  20. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  21. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11(3), 363–371 (1965)

    Article  MathSciNet  Google Scholar 

  22. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems for wmt 16. In: WMT, pp. 371–376 (2016)

    Google Scholar 

  23. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. In: ACL (2016)

    Google Scholar 

  24. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: ACL (2016)

    Google Scholar 

  25. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: Mass: Masked sequence to sequence pre-training for language generation. In: ICML, pp. 5926–5936 (2019)

    Google Scholar 

  26. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NeurIPS, pp. 3104–3112 (2014)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  28. Yamada, T., Matsunaga, H., Ogata, T.: Paired recurrent autoencoders for bidirectional translation between robot actions and linguistic descriptions. IEEE Robot. Autom. Lett. 3(4), 3441–3448 (2018)

    Article  Google Scholar 

  29. Zhang, H., Qiu, S., Wu, S.: Dual knowledge distillation for bidirectional neural machine translation. In: IJCNN, pp. 1–7 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, N., Zhang, H., Jin, C., Duan, X. (2022). Random Concatenation: A Simple Data Augmentation Method for Neural Machine Translation. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13551. Springer, Cham. https://doi.org/10.1007/978-3-031-17120-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17120-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17119-2

  • Online ISBN: 978-3-031-17120-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics