Abstract
Private Information Retrieval (PIR) allows a client to retrieve one entry from a database held by a server, while hiding from the server which entry has been retrieved. Symmetrically Private Information Retrieval (SPIR) additionally protects the privacy of the data, requiring that the client obtains only its desired entry, and no information on other data entries.
In recent years, considerable effort has been expanded towards making PIR practical, reducing communication and computation. State-of-the-art PIR protocols are based on homomorphic encryption from the ring-LWE assumption. However, these efficient PIR protocols do not achieve database privacy, and leak a lot of information about other data entries, even when the client is honest. Generic transformation of these PIR protocols to SPIR have been suggested, but not implemented.
In this paper, we propose XSPIR, a practically efficient SPIR scheme. Our scheme is based on homomorphic encryption from ring-LWE like recent PIR works, but achieves a stronger security guarantee with low performance overhead. We implement XSPIR, and run experiments comparing its performance against SealPIR (Angel et al., IEEE S &P 2018) and MulPIR (Ali et al., USENIX SECURITY 2021). We find that, even though our scheme achieves a stronger security guarantee, our performance is comparable to these state-of-the-art PIR protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We leave the size of each element implicit as it does not affect the definition.
References
Abusalah, H., Alwen, J., Cohen, B., Khilko, D., Pietrzak, K., Reyzin, L.: Beyond Hellman’s time-memory trade-offs with applications to proofs of space. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 357–379. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_13
Aguilar Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: private information retrieval for everyone. Proc. Priv. Enhancing Technol. 2016(2), 155–174 (2016)
Albrecht, M., et al.: Homomorphic Encryption Standard. In: Lauter, K., Dai, W., Laine, K. (eds.) Protecting Privacy through Homomorphic Encryption, pp. 31–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77287-1_2
Ali, A., et al.: Communication-computation trade-offs in PIR. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association (2021). https://www.usenix.org/conference/usenixsecurity21/presentation/ali
Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and amortized query processing. In: 2018 IEEE Symposium on Security and Privacy, pp. 962–979. IEEE Computer Society Press (2018)
Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastructure. In: Holz, T., Savage, S. (eds.) USENIX Security 2016: 25th USENIX Security Symposium. USENIX Association (2016)
Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29
Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the \(O(n^{1/(2k-1)})\) barrier for information-theoretic private information retrieval. In: 43rd Annual Symposium on Foundations of Computer Science, pp. 261–270. IEEE Computer Society Press (2002)
Boneh, D., Bortz, A., Inguva, S., Saint-Jean, F., Feigenbaum, J.: Private information retrieval. https://crypto.stanford.edu/pir-library/
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_1
Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28
Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and Communications Security, pp. 395–412. ACM Press (2019)
Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled psi from fully homomorphic encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. CCS 2018, Association for Computing Machinery (2018). https://doi.org/10.1145/3243734.3243836
Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS 2017, Association for Computing Machinery (2017). https://doi.org/10.1145/3133956.3134061
Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications Security, pp. 1243–1255. ACM Press (2017)
Cheng, R., et al.: Talek: private group messaging with hidden access patterns. Cryptology ePrint Archive, Report 2020/066 (2020). https://eprint.iacr.org/2020/066
Cheng, R., et al.: Talek: a private publish-subscribe protocol. In Submission (2020). https://raymondcheng.net/download/papers/talek-tr.pdf
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th Annual Symposium on Foundations of Computer Science, pp. 41–50. IEEE Computer Society Press (1995)
Cong, K., et al.: Labeled PSI from homomorphic encryption with reduced computation and communication. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. CCS 2021, Association for Computing Machinery (2021). https://doi.org/10.1145/3460120.3484760
Costea, S., Barbu, D.M., Ghinita, G., Rughinis, R.: A comparative evaluation of private information retrieval techniques in location-based services. In: 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, pp. 618–623 (2012)
De Cristofaro, E., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving sharing of sensitive information. In: McCune, J.M., et al. (eds.) Trust and Trustworthy Computing, pp. 239–253. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)
Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: Practical multi-server PIR. In: CCSW 2014: Proceedings of the 6th edition of the ACM Workshop on Cloud Computing Security, pp. 45–56 (2014)
Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information retrieval. In: Kohno, T. (ed.) USENIX Security 2012: 21st USENIX Security Symposium, pp. 269–283. USENIX Association (2012)
Dong, C., Chen, L.: A fast single server private information retrieval protocol with low communication cost. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_22
Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1
Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_12
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144
Fisch, B.A., et al.: Malicious-client security in blind seer: a scalable private DBMS. In: 2015 IEEE Symposium on Security and Privacy, pp. 395–410. IEEE Computer Society Press (2015)
Garg, S., Hajiabadi, M., Ostrovsky, R.: Efficient range-trapdoor functions and applications: rate-1 OT and more. Cryptology ePrint Archive, Report 2019/990 (2019). https://eprint.iacr.org/2019/990
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM Press (2009)
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28
Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_65
Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3) (2000). https://doi.org/10.1006/jcss.1999.1689
Goldberg, I.: Improving the robustness of private information retrieval. In: 2007 IEEE Symposium on Security and Privacy, pp. 131–148. IEEE Computer Society Press (2007)
Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad impressions at scale. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS 2016, Association for Computing Machinery (2016). https://doi.org/10.1145/2976749.2978407
Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private information retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_7
Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.: Scalable and private media consumption with popcorn. Cryptology ePrint Archive, Report 2015/489 (2015). http://eprint.iacr.org/2015/489
Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce. EC 1999, Association for Computing Machinery (1999). https://doi.org/10.1145/336992.337012
Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Outsourced symmetric private information retrieval. In: Proceedings of the ACM Conference on Computer and Communications Security (2013)
Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate private information retrieval from homomorphic encryption. Proc. Priv. Enhancing Technol. 2015(2), 222–243 (2015)
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference on Computer and Communications Security, pp. 818–829. ACM Press (2016)
Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: 38th Annual Symposium on Foundations of Computer Science, pp. 364–373. IEEE Computer Society Press (1997)
Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication system with strong anonymity. Proc. Priv. Enhancing Technol. 2016(2), 115–134 (2016)
Li, J., Liu, Y., Wu, S.: Pipa: Privacy-preserving password checkup via homomorphic encryption. In: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security (2021)
Lipmaa, H., Pavlyk, K.: A simpler rate-optimal CPIR protocol. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 621–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_35
Mansy, D., Rindal, P.: Endemic oblivious transfer. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. CCS 2019, Association for Computing Machinery (2019). https://doi.org/10.1145/3319535.3354210
McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-N OT from programmable-once public functions. Cryptology ePrint Archive, Report 2020/1043 (2020). https://eprint.iacr.org/2020/1043
McQuoid, I., Rosulek, M., Roy, L.: Batching base oblivious transfers. Cryptology ePrint Archive, Report 2021/682 (2021). https://eprint.iacr.org/2021/682
Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: 1986 IEEE Symposium on Security and Privacy, pp. 134–134 (1986)
Microsoft SEAL (release 3.5). Microsoft Research, Redmond, WA (2020). https://github.com/Microsoft/SEAL
Microsoft SealPIR. https://github.com/microsoft/SealPIR
Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-tor: scalable anonymous communication using private information retrieval. In: USENIX Security 2011: 20th USENIX Security Symposium. USENIX Association (2011)
Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_22
Papadopoulos, S., Bakiras, S., Papadias, D.: pCloud: a distributed system for practical PIR. IEEE Trans. Dependable Secure Comput. 9(1), 115–127 (2012)
Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE Symposium on Security and Privacy, pp. 359–374. IEEE Computer Society Press (2014)
Park, J., Tibouchi, M.: SHECS-PIR: Somewhat Homomorphic Encryption-Based Compact and Scalable Private Information Retrieval. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 86–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_5
Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer Library. https://github.com/osu-crypto/libOTe
Saint-Jean, F.: Java implementation of a single-database computationally symmetric private information retrieval (CSPIR) protocol. Yale University New Haven CT Department of Computer Science Technical Representative (2005)
Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/2011/133
Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., et al. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_28
Acknowledgement
This research was supported in part by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research under award number DE-SC-0001234, a grant from the Columbia-IBM center for Blockchain and Data Transparency, by LexisNexis risk solutions, and by JPMorgan Chase & Co. Any views or opinions expressed herein are solely those of the authors listed.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, C., Liu, Z., Malkin, T. (2022). XSPIR: Efficient Symmetrically Private Information Retrieval from Ring-LWE. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds) Computer Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science, vol 13554. Springer, Cham. https://doi.org/10.1007/978-3-031-17140-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-17140-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17139-0
Online ISBN: 978-3-031-17140-6
eBook Packages: Computer ScienceComputer Science (R0)