Skip to main content

New Unbounded Verifiable Data Streaming for Batch Query with Almost Optimal Overhead

  • Conference paper
  • First Online:
Computer Security – ESORICS 2022 (ESORICS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13554))

Included in the following conference series:

Abstract

Verifiable Data Streaming (VDS) enables a resource-limited client to continuously outsource data to an untrusted server in a sequential manner while supporting public integrity verification and efficient update. However, most existing VDS schemes require the client to generate all proofs in advance and store them at the server, which leads to a heavy computation burden on the client. In addition, all the previous VDS schemes can perform batch query (i.e., retrieving multiple data entries at once), but are subject to linear communication cost l, where l is the number of queried data. In this paper, we first introduce a new cryptographic primitive named Double-trapdoor Chameleon Vector Commitment (DCVC), and then present an unbounded VDS scheme \(\mathsf {VDS_1}\) with optimal communication cost in the random oracle model from aggregatable cross-commitment variant of DCVC. Furthermore, we propose, to our best knowledge, the first unbounded VDS scheme \(\textsf{VDS}_2\) with optimal communication and storage overhead in the standard model by integrating Double-trapdoor Chameleon Hash Function (DCH) and Key-Value Commitment (KVC). Both of our schemes enjoy constant-size public key. Finally, we demonstrate the efficiency of our two VDS schemes with a comprehensive performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work, we simply consider that the keys are integers \(\{1,2,\dots \}\).

References

  1. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28

    Chapter  Google Scholar 

  2. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_12

    Chapter  MATH  Google Scholar 

  3. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20

    Chapter  Google Scholar 

  4. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1

    Chapter  Google Scholar 

  5. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  6. Chen, C., Wu, H., Wang, L., Yu, C.: Practical integrity preservation for data streaming in cloud-assisted healthcare sensor systems. Comput. Networks 129, 472–480 (2017)

    Article  Google Scholar 

  7. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30144-8_8

    Chapter  Google Scholar 

  8. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 18–30. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_2

    Chapter  Google Scholar 

  9. Chen, X., et al.: Efficient generic on-line/off-line (threshold) signatures without key exposure. Inf. Sci. 178(21), 4192–4203 (2008)

    Article  MathSciNet  Google Scholar 

  10. Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of knowledge secure under concurrent man-in-the-middle attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_14

    Chapter  Google Scholar 

  11. Krupp, J., Schröder, D., Simkin, M., Fiore, D., Ateniese, G., Nuernberger, S.: Nearly optimal verifiable data streaming. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 417–445. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_16

    Chapter  Google Scholar 

  12. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19

    Chapter  Google Scholar 

  13. Miao, M., Wei, J., Wu, J., Li, K., Susilo, W.: Verifiable data streaming with efficient update for intelligent automation systems. Int. J. Intell. Syst. 37(2), 1322–1338 (2022)

    Article  Google Scholar 

  14. Schröder, D., Schröder, H.: Verifiable data streaming. In: CCS 2012, Raleigh, NC, USA, 16–18 October 2012, pp. 953–964 (2012)

    Google Scholar 

  15. Schöder, D., Simkin, M.: VeriStream – a framework for verifiable data streaming. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 548–566. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_34

    Chapter  Google Scholar 

  16. Shamir, A.: On the generation of cryptographically strong pseudorandom sequences. ACM Trans. Comput. Syst. 1(1), 38–44 (1983)

    Article  Google Scholar 

  17. Sun, Y., Liu, Q., Chen, X., Du, X.: An adaptive authenticated data structure with privacy-preserving for big data stream in cloud. IEEE Trans. Inf. Forensics Secur. 15, 3295–3310 (2020)

    Article  Google Scholar 

  18. Tsai, I., Yu, C., Yokota, H., Kuo, S.: VENUS: verifiable range query in data streaming. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops, INFOCOM Workshops 2018, Honolulu, HI, USA, 15–19 April 2018, pp. 160–165. IEEE (2018)

    Google Scholar 

  19. Wei, J., Tian, G., Shen, J., Chen, X., Susilo, W.: Optimal verifiable data streaming protocol with data auditing. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 296–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_15

    Chapter  Google Scholar 

  20. Wu, J., Wang, J., Yong, X., Huang, X., Chen, X.: New unbounded verifiable data streaming for batch query with almost optimal overhead. IACR Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/1028

  21. Xu, J., Meng, Q., Wu, J., Zheng, J.X., Zhang, X., Sharma, S.: Efficient and lightweight data streaming authentication in industrial control and automation systems. IEEE Trans. Ind. Inform. 17(6), 4279–4287 (2021)

    Article  Google Scholar 

  22. Xu, J., Wei, L., Wu, W., Wang, A., Zhang, Y., Zhou, F.: Privacy-preserving data integrity verification by using lightweight streaming authenticated data structures for healthcare cyber-physical system. Future Gener. Comput. Syst. 108, 1287–1296 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 6196026014 and 62072357), the Fundamental Research Funds for the Central Universities (Nos. YJS2212 and ZDRC2204), and the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness (No. HNTS2022012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Wang, J., Yong, X., Huang, X., Chen, X. (2022). New Unbounded Verifiable Data Streaming for Batch Query with Almost Optimal Overhead. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds) Computer Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science, vol 13554. Springer, Cham. https://doi.org/10.1007/978-3-031-17140-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17140-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17139-0

  • Online ISBN: 978-3-031-17140-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics