Abstract
In this paper, we present an overview of the NLPCC 2022 Shared Task on Speech Entity Linking. This task aims to study entity linking methods for spoken languages. This speech entity linking task includes two tracks: Entity Recognition and Disambiguation (track 1), Entity Disambiguation-Only (track 2). 20 teams registered in the challenging task, and the top system achieved 0.7460 F1 in track 1 and 0.8884 in track 2. In this paper, we present the task description, dataset description, team submission ranking and results and analyze the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sevgili, Ö., Shelmanov, A., Arkhipov, M., et al.: Neural entity linking: a survey of models based on deep learning. Semantic Web 1–44 (2022). (Preprint)
Hoffart, J., Yosef, M.A., Bordino, I., et al.: Robust disambiguation of named entities in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 782–792 (2011)
Ji, H., Grishman, R., Dang, H.T., et al.: Overview of the TAC 2010 knowledge base population track. In: Third Text Analysis Conference (TAC 2010), vol. 3(2), p. 3 (2010)
Ravi, M.P.K., Singh, K., Mulang, I.O., et al.: Cholan: a modular approach for neural entity linking on Wikipedia and Wikidata. arXiv preprint arXiv:2101.09969 (2021)
Liu, X., Li, Y., Wu, H., et al.: Entity linking for tweets. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1304–1311 (2013)
Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural attention. arXiv preprint arXiv:1704.04920 (2017)
Gupta, N., Singh, S., Roth, D.: Entity linking via joint encoding of types, descriptions, and context. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 2681–2690 (2017)
Logeswaran, L., Chang, M.W., Lee, K., et al.: Zero-shot entity linking by reading entity descriptions. arXiv preprint arXiv:1906.07348 (2019)
Wu, L., Petroni, F., Josifoski, M., et al.: Scalable zero-shot entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814 (2019)
Zhang, W., Hua, W., Stratos, K.: EntQA: entity linking as question answering. arXiv preprint arXiv:2110.02369 (2021)
Hernandez, F., Nguyen, V., Ghannay, S., Tomashenko, N., Estève, Y.: TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation. In: Karpov, A., Jokisch, O., Potapova, R. (eds.) SPECOM 2018. LNCS (LNAI), vol. 11096, pp. 198–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99579-3_21
Varma, V., Bysani, P., Reddy, K., et al.: IIIT Hyderabad in guided summarization and knowledge base population. In: TAC (2010)
Humeau, S., Shuster, K., Lachaux, M.A., et al.: Poly-encoders: transformer architectures and pre-training strategies for fast and accurate multi-sentence scoring. arXiv preprint arXiv:1905.01969 (2019)
De Cao, N., Aziz, W., Titov, I.: Highly parallel autoregressive entity linking with discriminative correction. arXiv preprint arXiv:2109.03792 (2021)
Acknowledgments
This work is supported by the National Key R &D Program of China (No. 2020AAA0106600).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Song, R., Zhang, S., Tian, X., Guo, Y. (2022). Overview of the NLPCC2022 Shared Task on Speech Entity Linking. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13552. Springer, Cham. https://doi.org/10.1007/978-3-031-17189-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-17189-5_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17188-8
Online ISBN: 978-3-031-17189-5
eBook Packages: Computer ScienceComputer Science (R0)