Skip to main content

MGEDR: A Molecular Graph Encoder for Drug Recommendation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13552))

  • 1050 Accesses

Abstract

Recently, drug recommendation tasks have been widely accepted in intelligent healthcare. Most of the existing methods utilize patients’ electronic health records (EHRs) to achieve medical prediction. However, existing algorithms neglect the description of the patient’s health status, which makes it difficult to adapt to the dynamic patients’ condition. And they ignore the intrinsic encoding of drug molecular structure, resulting in the weak performance of drug recommendation. To fill the gap, we propose a molecular graph encoder for drug recommendation named MGEDR to capture the genuine health status of patients. Furthermore, We encode the drug molecular graph and functional groups separately to obtain subtle drug representation. And we design the degree encoder and functional groups encoder to seize the intrinsic features of the molecule efficaciously. Our experimental results show that our proposed MGEDR framework performs significantly better than state-of-the-art baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  2. Degen, J., Wegscheid-Gerlach, C., Zaliani, A., Rarey, M.: On the art of compiling and using’drug-like’chemical fragment spaces. ChemMedChem Chem. Enabling Drug Dis. 3(10), 1503–1507 (2008)

    Google Scholar 

  3. Garets, D., Davis, M.: Electronic medical records vs. electronic health records: yes, there is a difference. Policy white paper. Chicago, HIMSS Analytics pp. 1–14 (2006)

    Google Scholar 

  4. He, X., Folkman, L., Borgwardt, K.: Kernelized rank learning for personalized drug recommendation. Bioinformatics 34(16), 2808–2816 (2018)

    Article  Google Scholar 

  5. Huang, K., Fu, T., Glass, L.M., Zitnik, M., Xiao, C., Sun, J.: Deeppurpose: a deep learning library for drug-target interaction prediction. Bioinformatics 36(22–23), 5545–5547 (2020)

    Google Scholar 

  6. Jing, B., Xiang, Y., Chen, X., Chen, Y., Tong, H.: Graph-mvp: multi-view prototypical contrastive learning for multiplex graphs. arXiv preprint arXiv:2109.03560 (2021)

  7. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

  8. Le, H., Tran, T., Venkatesh, S.: Dual memory neural computer for asynchronous two-view sequential learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1637–1645 (2018)

    Google Scholar 

  9. Liu, H., Lin, H., Shen, C., Yang, Z., Wang, J., Yang, L.: Self-supervised learning with heterogeneous graph neural network for covid-19 drug recommendation. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1412–1417. IEEE (2021)

    Google Scholar 

  10. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  11. Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: Gamenet: graph augmented memory networks for recommending medication combination. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1126–1133 (2019)

    Google Scholar 

  12. Yang, C., Xiao, C., Ma, F., Glass, L., Sun, J.: Safedrug: dual molecular graph encoders for safe drug recommendations. arXiv preprint arXiv:2105.02711 (2021)

  13. Zhang, Y., Zhang, D., Hassan, M.M., Alamri, A., Peng, L.: Cadre: Cloud-assisted drug recommendation service for online pharmacies. Mobile Netw. Appli. 20(3), 348–355 (2015)

    Article  Google Scholar 

  14. Zhang, Y., Chen, R., Tang, J., Stewart, W.F., Sun, J.: Leap: learning to prescribe effective and safe treatment combinations for multimorbidity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1315–1324 (2017)

    Google Scholar 

  15. Zhang, Z., Guan, J., Zhou, S.: Fragat: a fragment-oriented multi-scale graph attention model for molecular property prediction. Bioinformatics 37(18), 2981–2987 (2021)

    Article  Google Scholar 

  16. Zheng, Z., et al.: Interaction-aware drug package recommendation via policy gradient. ACM Trans. Inf. Syst. (TOIS) (2022)

    Google Scholar 

Download references

Acknowledgment

This work is supported by grant from the Natural Science Foundation of China (No. 62072070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijia Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, K., Zhang, S., Liu, H., Zhang, Y., Lin, H. (2022). MGEDR: A Molecular Graph Encoder for Drug Recommendation. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13552. Springer, Cham. https://doi.org/10.1007/978-3-031-17189-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17189-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17188-8

  • Online ISBN: 978-3-031-17189-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics