Skip to main content

Hybrid Decoding – Classical-Quantum Trade-Offs for Information Set Decoding

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2022)

Abstract

The security of code-based constructions is usually assessed by Information Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification yields an asymptotic square root gain over the classical analogue. However, already the most basic ISD algorithm by Prange suffers enormous width requirements caused by the quadratic description length of the underlying problem. Even if polynomial, this need for qubits is one of the biggest challenges considering the application of real quantum circuits in the near- to mid-term.

In this work we overcome this issue by presenting the first hybrid ISD algorithms that allow to tailor the required qubits to any available amount while still providing quantum speedups of the form \(T^\delta \), \(0.5<\delta <1\), where T is the running time of the purely classical procedure. Interestingly, when constraining the width of the circuit instead of its depth we are able to overcome previous optimality results on constraint quantum search.

Further we give an implementation of the fully-fledged quantum ISD procedure and the classical co-processor using the quantum simulation library Qibo and SageMath.

M. Manzano—This work was conducted while the author was affiliated with Technology Innovation Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our implementation (available at https://github.com/qiboteam/qISD) also includes an implementation of the Lee-Brickel [21] ISD improvement.

  2. 2.

    Note that in Algorithm 1 we model \(H_I\) as the first \(n-k\) columns of HP, where P is a random permutation matrix.

References

  1. Alagic, G., et al.: Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST (2020)

    Google Scholar 

  2. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2020)

    Google Scholar 

  3. Bärtschi, A., Eidenbenz, S.: Deterministic preparation of Dicke states. In: Gąsieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 126–139. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_9

    Chapter  MATH  Google Scholar 

  4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how \(1+1=0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  5. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_6

    Chapter  Google Scholar 

  6. Biasse, J.F., Bonnetain, X., Pring, B., Schrottenloher, A., Youmans, W.: A trade-off between classical and quantum circuit size for an attack against CSIDH. J. Math. Cryptol. 15(1), 4–17 (2020)

    Article  MathSciNet  Google Scholar 

  7. Biasse, J.F., Pring, B.: A framework for reducing the overhead of the quantum oracle for use with Grover’s algorithm with applications to cryptanalysis of SIKE. J. Math. Cryptol. 15(1), 143–156 (2020)

    Article  MathSciNet  Google Scholar 

  8. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

    Chapter  Google Scholar 

  9. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

    Article  MathSciNet  Google Scholar 

  10. Chou, T., et al.: Classic McEliece: conservative code-based cryptography, 10 October 2020 (2020)

    Google Scholar 

  11. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of the 5th Joint Soviet-Swedish International Workshop on Information Theory, pp. 50–52 (1991)

    Google Scholar 

  12. Efthymiou, S., et al.: Qibo: a framework for quantum simulation with hardware acceleration. arXiv preprint arXiv:2009.01845 (2020)

  13. Efthymiou, S., et al.: Quantum-TII/Qibo: Qibo (2020). https://doi.org/10.5281/zenodo.3997195

  14. Esser, A., Bellini, E.: Syndrome decoding estimator. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 112–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_5

    Chapter  Google Scholar 

  15. Esser, A., May, A., Verbel, J., Wen, W.: Partial key exposure attacks on BIKE, Rainbow and NTRU. Cryptology ePrint Archive (2022)

    Google Scholar 

  16. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized quantum implementation of ISD on scalable quantum resources. arXiv preprint arXiv:2112.06157 (2021)

  17. Gilbert, E.N.: A comparison of signalling alphabets. Bell Syst. Tech. J. 31(3), 504–522 (1952)

    Article  Google Scholar 

  18. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10

    Chapter  Google Scholar 

  19. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_5

    Chapter  MATH  Google Scholar 

  20. Kirshanova, E.: Improved quantum information set decoding. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 507–527. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_24

    Chapter  MATH  Google Scholar 

  21. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_25

    Chapter  Google Scholar 

  22. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  23. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9

    Chapter  Google Scholar 

  24. Melchor, C.A., et al.: Hamming quasi-cyclic (HQC) (2020)

    Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation, vol. 2, no. 8, p. 23. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  26. Perriello, S., Barenghi, A., Pelosi, G.: A quantum circuit to speed-up the cryptanalysis of code-based cryptosystems. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M. (eds.) SecureComm 2021. LNICST, vol. 399, pp. 458–474. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90022-9_25

    Chapter  Google Scholar 

  27. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  28. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

    Chapter  Google Scholar 

  29. Varshamov, R.R.: Estimate of the number of signals in error correcting codes. Docklady Akad. Nauk, SSSR 117, 739–741 (1957)

    Google Scholar 

  30. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4), 2746 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Esser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M. (2022). Hybrid Decoding – Classical-Quantum Trade-Offs for Information Set Decoding. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryptography. PQCrypto 2022. Lecture Notes in Computer Science, vol 13512. Springer, Cham. https://doi.org/10.1007/978-3-031-17234-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17234-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17233-5

  • Online ISBN: 978-3-031-17234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics