Skip to main content

A Study of Error Floor Behavior in QC-MDPC Codes

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13512))

Included in the following conference series:

Abstract

We present experimental findings on the decoding failure rate (DFR) of BIKE, a fourth-round candidate in the NIST Post-Quantum Standardization process, at the 20-bit security level. We select parameters according to BIKE design principles and conduct a series of experiments. We directly compute the average DFR on a range of BIKE block sizes and identify both the waterfall and error floor regions of the DFR curve. We then study the influence on the average DFR of three sets \(\mathcal {C}\), \(\mathcal {N}\), and \(2\mathcal {N}\) of near-codewords—vectors of low weight that induce syndromes of low weight—defined by Vasseur in 2021. We find that error vectors leading to decoding failures have small maximum support intersection with elements of these sets; further, the distribution of intersections is quite similar to that of sampling random error vectors and counting the intersections with \(\mathcal {C}\), \(\mathcal {N}\), and \(2\mathcal {N}\). Our results indicate that these three sets are not sufficient in classifying vectors expected to cause decoding failures. Finally, we study the role of syndrome weight on the decoding behavior and conclude that the set of error vectors that lead to decoding failures differ from random vectors by having low syndrome weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aragon, N., et al.: BIKE: bit flipping key encapsulation - spec v4.2 (2021). https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf

  2. Aragon, N., et al.: BIKE: bit flipping key encapsulation - spec v1.0 (2017). https://bikesuite.org/files/BIKE.2017.11.30.pdf

  3. Arpin, S., Billingsley, T.R., Hast, D.R., Lau, J.B., Perlner, R., Robinson, A.: Raw data and decoder for the paper “A study of error floor behavior in QC-MDPC codes”. https://github.com/HastD/BIKE-error-floor. Accessed 23 May 2022

  4. Baldi, M.: QC-LDPC Code-Based Cryptography. SECE, Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02556-8

    Book  MATH  Google Scholar 

  5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how \(1+1=0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  6. Boston University Shared Computing Cluster. https://www.bu.edu/tech/support/research/computing-resources/scc/. Accessed 18 Feb 2022

  7. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10

    Chapter  Google Scholar 

  8. Drucker, N., Gueron, S., Kostic, D.: On constant-time QC-MDPC decoders with negligible failure rate. In: Baldi, M., Persichetti, E., Santini, P. (eds.) CBCrypto 2020. LNCS, vol. 12087, pp. 50–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54074-6_4

    Chapter  Google Scholar 

  9. Drucker, N., Gueron, S., Kostic, D.: QC-MDPC decoders with several shades of gray. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 35–50. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_3

    Chapter  MATH  Google Scholar 

  10. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_29

    Chapter  Google Scholar 

  11. MacKay, D.J.C., Postol, M.S.: Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes. Electron. Notes Theor. Comput. Sci. 74, 97–104 (2003). MFCSIT 2002, The Second Irish Conference on the Mathematical Foundations of Computer Science and Information Technology

    Google Scholar 

  12. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  13. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  14. Price, A., Hall, J.: A survey on trapping sets and stopping sets. arXiv e-prints (2017)

    Google Scholar 

  15. Richardson, T.: Error floors of LDPC codes. In: Proceedings of the 41st Annual Allerton Conference on Communication, Control, and Computing, pp. 1426–1435 (2003)

    Google Scholar 

  16. Richter, G.: Finding small stopping sets in the Tanner graphs of LDPC codes. In: 4th International Symposium on Turbo Codes and Related Topics, pp. 1–5 (2006)

    Google Scholar 

  17. Sendrier, N., Vasseur, V.: About low DFR for QC-MDPC decoding. Cryptology ePrint Archive, Paper 2019/1434 (2019). https://eprint.iacr.org/2019/1434

  18. Sendrier, N., Vasseur, V.: On the decoding failure rate of QC-MDPC bit-flipping decoders. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 404–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_22

    Chapter  Google Scholar 

  19. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

    Chapter  Google Scholar 

  20. Tillich, J.-P.: The decoding failure probability of MDPC codes. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 941–945. IEEE (2018)

    Google Scholar 

  21. Vasić, B., Chilappagari, S.K., Nguyen, D.V.: Failures and error floors of iterative decoders, chapter 6. In: Declerq, D., Fossorier, M., Biglieri, E. (eds.) Academic Press Library in Mobile and Wireless Communications, pp. 299–341. Academic Press, Oxford (2014)

    Google Scholar 

  22. Vasseur, V.: Post-quantum cryptography: a study of the decoding of QC-MDPC codes. Ph.D. thesis, Université de Paris (2021)

    Google Scholar 

  23. Vasseur, V.: QC-MDPC codes DFR and the IND-CCA security of BIKE. Cryptology ePrint Archive, Paper 2021/1458 (2021). https://eprint.iacr.org/2021/1458

  24. Wang, C.-C., Kulkarni, S.R., Vincent Poor, H.: Finding all small error-prone substructures in LDPC codes. IEEE Trans. Inform. Theory 55(5), 1976–1999 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Valentin Vasseur for helpful discussions and code for reproducing experimental data, Paolo Santini for providing us with an initial SageMath implementation of the BGF decoder, and the anonymous reviewers for helpful feedback and suggestions.

This collaboration was initiated during the Rethinking Number Theory 2 (RNT2) Workshop. Funding for RNT2 came from the Number Theory Foundation and the University of Wisconsin-Eau Claire Department of Mathematics. This work was supported in part by the Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation (Simons Foundation grant #550023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arpin, S., Billingsley, T.R., Hast, D.R., Lau, J.B., Perlner, R., Robinson, A. (2022). A Study of Error Floor Behavior in QC-MDPC Codes. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryptography. PQCrypto 2022. Lecture Notes in Computer Science, vol 13512. Springer, Cham. https://doi.org/10.1007/978-3-031-17234-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17234-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17233-5

  • Online ISBN: 978-3-031-17234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics