Abstract
We present experimental findings on the decoding failure rate (DFR) of BIKE, a fourth-round candidate in the NIST Post-Quantum Standardization process, at the 20-bit security level. We select parameters according to BIKE design principles and conduct a series of experiments. We directly compute the average DFR on a range of BIKE block sizes and identify both the waterfall and error floor regions of the DFR curve. We then study the influence on the average DFR of three sets \(\mathcal {C}\), \(\mathcal {N}\), and \(2\mathcal {N}\) of near-codewords—vectors of low weight that induce syndromes of low weight—defined by Vasseur in 2021. We find that error vectors leading to decoding failures have small maximum support intersection with elements of these sets; further, the distribution of intersections is quite similar to that of sampling random error vectors and counting the intersections with \(\mathcal {C}\), \(\mathcal {N}\), and \(2\mathcal {N}\). Our results indicate that these three sets are not sufficient in classifying vectors expected to cause decoding failures. Finally, we study the role of syndrome weight on the decoding behavior and conclude that the set of error vectors that lead to decoding failures differ from random vectors by having low syndrome weight.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aragon, N., et al.: BIKE: bit flipping key encapsulation - spec v4.2 (2021). https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf
Aragon, N., et al.: BIKE: bit flipping key encapsulation - spec v1.0 (2017). https://bikesuite.org/files/BIKE.2017.11.30.pdf
Arpin, S., Billingsley, T.R., Hast, D.R., Lau, J.B., Perlner, R., Robinson, A.: Raw data and decoder for the paper “A study of error floor behavior in QC-MDPC codes”. https://github.com/HastD/BIKE-error-floor. Accessed 23 May 2022
Baldi, M.: QC-LDPC Code-Based Cryptography. SECE, Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02556-8
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how \(1+1=0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Boston University Shared Computing Cluster. https://www.bu.edu/tech/support/research/computing-resources/scc/. Accessed 18 Feb 2022
Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10
Drucker, N., Gueron, S., Kostic, D.: On constant-time QC-MDPC decoders with negligible failure rate. In: Baldi, M., Persichetti, E., Santini, P. (eds.) CBCrypto 2020. LNCS, vol. 12087, pp. 50–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54074-6_4
Drucker, N., Gueron, S., Kostic, D.: QC-MDPC decoders with several shades of gray. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 35–50. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_3
Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_29
MacKay, D.J.C., Postol, M.S.: Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes. Electron. Notes Theor. Comput. Sci. 74, 97–104 (2003). MFCSIT 2002, The Second Irish Conference on the Mathematical Foundations of Computer Science and Information Technology
May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)
Price, A., Hall, J.: A survey on trapping sets and stopping sets. arXiv e-prints (2017)
Richardson, T.: Error floors of LDPC codes. In: Proceedings of the 41st Annual Allerton Conference on Communication, Control, and Computing, pp. 1426–1435 (2003)
Richter, G.: Finding small stopping sets in the Tanner graphs of LDPC codes. In: 4th International Symposium on Turbo Codes and Related Topics, pp. 1–5 (2006)
Sendrier, N., Vasseur, V.: About low DFR for QC-MDPC decoding. Cryptology ePrint Archive, Paper 2019/1434 (2019). https://eprint.iacr.org/2019/1434
Sendrier, N., Vasseur, V.: On the decoding failure rate of QC-MDPC bit-flipping decoders. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 404–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_22
Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850
Tillich, J.-P.: The decoding failure probability of MDPC codes. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 941–945. IEEE (2018)
Vasić, B., Chilappagari, S.K., Nguyen, D.V.: Failures and error floors of iterative decoders, chapter 6. In: Declerq, D., Fossorier, M., Biglieri, E. (eds.) Academic Press Library in Mobile and Wireless Communications, pp. 299–341. Academic Press, Oxford (2014)
Vasseur, V.: Post-quantum cryptography: a study of the decoding of QC-MDPC codes. Ph.D. thesis, Université de Paris (2021)
Vasseur, V.: QC-MDPC codes DFR and the IND-CCA security of BIKE. Cryptology ePrint Archive, Paper 2021/1458 (2021). https://eprint.iacr.org/2021/1458
Wang, C.-C., Kulkarni, S.R., Vincent Poor, H.: Finding all small error-prone substructures in LDPC codes. IEEE Trans. Inform. Theory 55(5), 1976–1999 (2009)
Acknowledgements
We would like to thank Valentin Vasseur for helpful discussions and code for reproducing experimental data, Paolo Santini for providing us with an initial SageMath implementation of the BGF decoder, and the anonymous reviewers for helpful feedback and suggestions.
This collaboration was initiated during the Rethinking Number Theory 2 (RNT2) Workshop. Funding for RNT2 came from the Number Theory Foundation and the University of Wisconsin-Eau Claire Department of Mathematics. This work was supported in part by the Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation (Simons Foundation grant #550023).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arpin, S., Billingsley, T.R., Hast, D.R., Lau, J.B., Perlner, R., Robinson, A. (2022). A Study of Error Floor Behavior in QC-MDPC Codes. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryptography. PQCrypto 2022. Lecture Notes in Computer Science, vol 13512. Springer, Cham. https://doi.org/10.1007/978-3-031-17234-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-17234-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17233-5
Online ISBN: 978-3-031-17234-2
eBook Packages: Computer ScienceComputer Science (R0)