Skip to main content

High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13587))

  • 1116 Accesses

Abstract

Since its advent in the last century, magnetic resonance imaging (MRI) provides a radiation-free diagnosis tool and has revolutionized medical imaging. Compressed sensing (CS) methods leverage the sparsity prior of signals to reconstruct clean images from under-sampled measurements and accelerate the acquisition process. However, it is challenging to reduce strong aliasing artifacts caused by under-sampling and produce high-quality reconstructions with fine details. In this paper, we propose a novel GAN-based framework to recover the under-sampled images, which is characterized by a novel data consistency block and a densely connected network cascade used to improve the model performance in visual inspection and evaluation metrics. The role of each proposed block has been challenged in the ablation study, in terms of reconstruction quality metrics, using texture-rich FastMRI Knee image dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, H., Mani, M., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019). https://doi.org/10.1109/TMI.2018.2865356

    Article  Google Scholar 

  2. Anuroop, S., Jure, Z., Tullie, M., Lawrence, Z., Aaron, D., K.S., D.: GrappaNet: combining parallel imaging with deep learning for multi-coil MRI reconstruction. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14303–14310 (2020). https://doi.org/10.1109/CVPR42600.2020.01432

  3. Bińkowski, M., Sutherland, D., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Duan, J., et al.: VS-Net: variable splitting network for accelerated parallel MRI reconstruction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 713–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_78

    Chapter  Google Scholar 

  5. Fair, M., Gatehouse, P., DiBella, E., Firmin, D.: A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 17, 68 (2015). https://doi.org/10.1186/s12968-015-0162-9

    Article  Google Scholar 

  6. Gatys, L., Ecker, A., Bethge, M.: Image style transfer using convolutional neural networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016). https://doi.org/10.1109/CVPR.2016.265

  7. Goodfellow, I., Pouget, A., Mirza, M., Xu, B., Warde, F., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  8. Griswold, M., Jakob, P., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). https://doi.org/10.1002/mrm.10171

    Article  Google Scholar 

  9. Hammernik, k., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977

  10. Hong, M., Yu, Y., Wang, H., Liu, F., Crozier, S.: Compressed sensing MRI with singular value decomposition-based sparsity basis. Phys. Med. Biol. 56, 6311–6325 (2021)

    Article  Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  12. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626 (2019). https://doi.org/10.1109/ISBI.2019.8759423

  13. Lee, D., Yoo, J., Tak, S., Ye, J.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018)

    Article  Google Scholar 

  14. Lingala, S., Jacob, M.: Blind compressive sensing dynamic MRI. IEEE Trans. Med. Imaging 32(6), 1132–1145 (2013)

    Article  Google Scholar 

  15. Liu, J., Yaghoobi, M.: Fine-grained MRI reconstruction using attentive selection generative adversarial networks. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1155–1159 (2021)

    Google Scholar 

  16. Mao, X., Li, Q., Xie, H., Lau, R., Wang, Z., Smolley, S.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821 (2017)

    Google Scholar 

  17. Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S., Zaharchuk, G., Xing, L., Pauly, J.M.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019). https://doi.org/10.1109/TMI.2018.2858752

    Article  Google Scholar 

  18. Narnhofer, D., Hammernik, K., Knoll, F., Pock, T.: Inverse GANs for accelerated MRI reconstruction. Wavel. Sparsity XVIII 11138, 111381A (2019). https://doi.org/10.1117/12.2527753

    Article  Google Scholar 

  19. Schlemper, J., Caballero, J., Hajnal, J., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018). https://doi.org/10.1109/TMI.2017.2760978

    Article  Google Scholar 

  20. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  21. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  Google Scholar 

  22. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. Adv. Neural Inf. Process. Syst. 29, 1–9 (2016)

    Google Scholar 

  23. Yuan, Z., et al.: SARA-GAN: self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Front. Neuroinform. 14, 1–12 (2020). https://doi.org/10.3389/fninf.2020.611666

    Article  Google Scholar 

  24. Zbontar, J., et al.: FastMRI: an open dataset and benchmarks for accelerated MRI. CoRR abs/1811.08839 (2018)

    Google Scholar 

  25. Zhang, C., Liu, Y., Shang, F., Li, Y., Liu, H.: A novel learned primal-dual network for image compressive sensing. IEEE Access 9, 26041–26050 (2021). https://doi.org/10.1109/ACCESS.2021.3057621

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshuai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Qin, C., Yaghoobi, M. (2022). High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors. In: Haq, N., Johnson, P., Maier, A., Qin, C., Würfl, T., Yoo, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2022. Lecture Notes in Computer Science, vol 13587. Springer, Cham. https://doi.org/10.1007/978-3-031-17247-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17247-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17246-5

  • Online ISBN: 978-3-031-17247-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics