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Abstract. Since its advent in the last century, magnetic resonance imag-
ing (MRI) provides a radiation-free diagnosis tool and has revolutionized
medical imaging. Compressed sensing (CS) methods leverage the sparsity
prior of signals to reconstruct clean images from under-sampled measure-
ments and accelerate the acquisition process. However, it is challenging
to reduce strong aliasing artifacts caused by under-sampling and produce
high-quality reconstructions with fine details. In this paper, we propose
a novel GAN-based framework to recover the under-sampled images,
which is characterized by a novel data consistency block and a densely
connected network cascade used to improve the model performance in vi-
sual inspection and evaluation metrics. The role of each proposed block
has been challenged in the ablation study, in terms of reconstruction
quality metrics, using texture-rich FastMRI Knee image dataset.

Keywords: MRI reconstruction · GAN-based framework · dense net-
work connections · data consistency.

1 Introduction

Magnetic resonance imaging (MRI) provides a non-invasive diagnosis tool in
medical imaging. However, the long acquisition time hinders its growth and
development in time-critic applications. The acquisition process can be accel-
erated by sampling fewer data. Under-sampling in k-space below the Nyquist-
Shannon rate leads to aliasing artifacts in image domain, which restricts the
acceleration factor in scanning. Many methods have been proposed to recover
the under-sampled signals. Compressed sensing (CS) leverages the sparsity prior
of signals to solve the ill-posed problems. Assuming sparsity representations in
image domain [5] or in some transformed space [10, 14], CS methods retrieve
reconstructions by solving sparsity regularized optimization. Nevertheless, the
sparsity assumption can be difficult to hold in real-world scenarios and poten-
tially fails to capture complicated features. Parallel imaging (PI) [8] unfolds
aliasing artifacts in image domain and produce clean images by incorporating
coil sensitivity priors. However, it is still difficult to remove strong artifacts and
provide high-quality reconstructions under very low sampling rates.
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In recent years, deep neural networks have achieved notable success in image
tasks and show potential to benefit the development of modern MRI [22, 21,
9]. The work in [13] retrieves promising reconstructions using dual magnitude
and phase networks. The method in [2] adopts a neural network to predict the
missing k-space points. A primal-dual network is introduced in [25] to solve the
conventional CS-MRI problem. VS-Net is proposed in [4] to find more accurate
solutions. The method in [20] adopts a neural network to estimate the coil sensi-
tivity maps used for parallel imaging. Despite their success, those methods still
struggle to preserve sharp structures and local subtleties.

Generative adversarial networks (GAN) [7] model the data distribution via an
adversarial competition between a generator and a discriminator. A GAN-based
framework is introduced in [21] to yield more realistic images. The method in
[18] incorporates a pre-trained generative network in the iterative reconstruction
pipeline. A self-attention layer is used in [23] to improve the capacity of the gen-
erator and achieve better results. However, GAN-based methods can potentially
produce unwanted artifacts and hallucinations and fail to capture diagnostic in-
formation. How to recover high-fidelity images from a few sampled data is still
challenging, which is directly linked with the maximum MRI acceleration factor.

In this paper, we propose to reconstruct alias-free images from the under-
sampled data in an end-to-end manner. We introduce a novel GAN-based recon-
struction framework, which incorporates the data consistency prior and dense
skip-connections to produce high-quality reconstructions with more accurate
structures and local details. To evaluate the proposed framework, we compare it
with other deep learning methods. It is demonstrated that the proposed method
shows superiority in terms of visual quality and relevance metrics. The ablation
studies show that the proposed model is able to deliver enhanced performance.

2 Method

2.1 Problem Formulation

The high-quality image s is under-sampled as follows,

y = A(s) = m� F (s), (1)

where y is the measurement, A is the under-sampling operator, m is the sam-
pling mask, F denotes the Fourier transform, and � refers to the element-wise
multiplication. CS methods recover the signal by solving the optimization below,

min
x
‖A(x)− y‖2 + λR(x), (2)

whereR(x) denotes a regularization. Existing optimization solvers can be compu-
tationally expensive and hard to handle complex image features [21]. We instead
provide an end-to-end solution using a trained neural network model.
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Fig. 1: Illustration of network features where the channel and spatial size of
output features are denoted by C and N2. a) Densely connected layers, b) FR-
DCB, and c) densely connected network cascade.

2.2 Reconstruction Framework

In this section, we first introduce the data consistency block and network cascade,
and then describe the model design.

Feature Residual Data Consistency Block (FR-DCB) We propose to leverage
data consistency (DC) blocks to “correct” the intermediate predictions and pro-
vide more faithful results. However, conventional DC blocks inevitably require
to collapse the feature channels to fit the complex-valued data, which can have
a damaging effect on final performance due to the bottleneck design. To benefit
feature propagation and alleviate the bottleneck problem, we take the advantage
of residual learning at the feature level and implement the DC operation by,

h← γh+ (1− γ)f∗(DC(f(h))), (3)

where h denotes the output features, f and f∗ are two convolutional layers used
for channel collapse and expansion, andDC refers to the data consistency update
given by,

DC(x) = F−1(m� y + (1−m)� F (x)), (4)

where F−1 denotes the inverse Fourier transform. The resultant block, dubbed
feature residual data consistency block (FR-DCB), is illustrated in Fig. 1.

Densely Connected Network Cascade Deep cascade of neural networks are widely
used for MRI reconstruction [13, 4, 19, 1], which potentially yield higher per-
formance due to the powerful representations learned with a deep structure.
Inspired by densely connected layers introduced in [11], we propose a densely
connected reconstruction framework, see Fig. 1 and 2, to enable feature transmis-
sion and reuse by dense skip-connections between sub-networks. It is noteworthy
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that the outputs of each sub-network are feature volumes rather than 2-channel
images, e.g. in [1, 17], which potentially resists the bottleneck problem. The pre-
dictions from all preceding sub-networks are collected together with the current
output via channel concatenation and fed to the following sub-network as input.
The feature maps from all sub-networks are fused together to produce the final
outcome, as illustrated in Fig. 1 and 2.
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Fig. 2: Illustration of the model architecture where a single sub-network is dis-
played for brevity. The zero-filled as input is first mapped by a head layer. The
output features from all preceding sub-networks are collected to form dense by-
pass connections. The final result is given via a tail layer.

Model Design We adopt the U-shaped structure, displayed in Fig. 2, as sub-
networks to form the reconstruction framework where 5 sub-networks are de-
ployed. Densely connected layers [11] are embedded in all decoding levels to
refine feature representations and the FR-DCB blocks are appended to each sub-
network. We use the zero-filled z = F−1(y) as input to the framework, which
is first mapped via a convolutional layer and subsequently fed to sub-networks.
The features from each sub-network are consecutively used to construct a densely
connected cascade. The reconstruction G is given by fusing all collected features.

2.3 Objective Function

We use the L1 metric and structural similarity index (SSIM) to measure the
reconstruction errors. The loss is given by,

Lrec = (1− α)L1(G, s) + αLSSIM (G, s), (5)
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where we set α = 0.4. We adopt the Least Squares GAN (LSGAN) [16] to
encourage realistic details. It can prevent the saturation issue and provide more
stable and faster convergences [16], compared to vallina GAN. The adversarial
loss is computed as follows,

LD
adv = E[‖D(s)− b‖22] + E[‖D(G)− a‖22]

LG
adv = E[‖D(G)− c‖22], (6)

whereD is a discriminator, E denotes the expectation, and the hyper-parameters
are set to be a = 0 and b = c = 1. The perceptual loss, which is normally used
in a GAN-based framework to resist hallucinations, is given as follows,

Lvgg =
∑
i

(‖f ivgg(G)− f ivgg(s)‖1 + β‖f igram(G)− f igram(s)‖1), (7)

where f ivgg is the pre-activations at the i-th layer of a pre-trained network, e.g.
VGG [21], f igram is the Gram matrix [6], and β = 0.005. It leverages the deep
structure to learn more consistent representations with the human visual system.
The total objective is given as below,

L = E{(G,s)}[λrecLrec + λadvLadv + λvggLvgg], (8)

where we set λrec = 10, λadv = 0.05, and λvgg = 0.5.

Fig. 3: Illustration of 8× and 4× under-sampling and reconstruction. First) fully
sampled, second) sampling pattern, third) zero-filled, and last) reconstruction.

3 Experiment

We conduct experiments on single-coil knee MR images which contain rich struc-
tures and textures. We extract 2800 samples from the FastMRI Knee database
[24] for training and 164 samples from different cases for test. A fixed random
mask is adopted in the under-sampling operation, as presented in Fig. 3, where
the total reduction factor is respectively set to 8 and 4 with 4% and 8% central
lines preserved. The model is trained for 30 epochs with a batch size of 4. An
Adam optimizer is used with β1=0.5, β2=0.999, and a learning rate of 1e-5. We
use two channels to handle complex-valued data, e.g. inputs and outputs.
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(a) ground truth (GT)

(b) MICCAN [12] (c) MoDL [1] (d) Unet [24]

(e) ASGAN [15] (f) proposed (g) GT patch

Fig. 4: Comparison results of 8× accelerated single-coil MRI reconstruction.

(a) ground truth (GT)

(b) MICCAN [12] (c) MoDL [1] (d) Unet [24]

(e) ASGAN [15] (f) proposed (g) GT patch

Fig. 5: Comparison results of 4× accelerated single-coil MRI reconstruction.

3.1 Comparison Results

We compare the proposed method with other state-of-the-art approaches: MIC-
CAN [12], MoDL [1], FastMRI Unet [24], and ASGAN [15]. The reconstruction
results are displayed in Fig. 4 and 5. From Fig. 4, we found that the proposed
method produces superior reconstructions with rich textural and structural de-
tails, which leads to more realistic and visually promising results. We can observe
that ASGAN generates fine local subtleties, whereas it can suffer from textural
artifacts, see Fig. 5 (e), and disrupted structures, see Fig. 4 (e). By contrast,
the proposed method provides more faithful reconstructions. From the residual
maps shown in Fig 6, we can observe that our method produces fewer errors. We
adopt PSNR and SSIM as evaluation metrics, where higher values are better,
and use FID and KID [3] to measure the visual quality, which prefer lower scores.
The quantitative results are shown in Table 1, which shows that the proposed
method consistently surpasses other approaches in terms of relevant metrics.

3.2 Ablation Studies on Model Components

We conduct ablation studies to verify the effectiveness of the proposed model
features. We remove the FR-DCB modules from the framework and compare it
with the proposed model. For simplicity, the acceleration factor is selected to
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(a) ground truth (GT)

(b) MICCAN [12] (c) MoDL [1] (d) Unet [24]

(e) ASGAN [15] (f) proposed (g) zero-filled

Fig. 6: Residual maps (2× amplified) of 8× accelerated single-coil MRI recon-
struction.

Table 1: Quantitative Evaluation on Accelerated MRI Reconstruction.
method PSNR↑ SSIM↑ FID↓ KID↓

8×

proposed 27.25 0.720 81.06 0.014
ASGAN [15] 25.45 0.638 104.34 0.036
FastMRI Unet [24] 25.82 0.703 160.35 0.121
MoDL [1] 27.13 0.620 143.65 0.080
MICCAN [12] 26.61 0.642 180.66 0.146
zero-filled 20.54 0.388 423.32 0.533

4×

proposed 31.11 0.824 63.74 0.006
ASGAN [15] 27.73 0.711 82.18 0.016
FastMRI Unet [24] 28.35 0.771 118.07 0.061
MoDL [1] 30.34 0.745 98.86 0.042
MICCAN [12] 30.11 0.711 99.44 0.040
zero-filled 23.94 0.486 255.06 0.239

8 for ablation studies. The ablation results are presented in Table 2. We found
that the removal of FR-DCB leads to performance drop in all evaluation metrics
by a large margin. To testify the efficacy of the densely connected cascade,
we remove the dense bypasses between sub-networks and repeat the feature
volumes to fit the input channel size. From Table 2, we observed that the densely
connected cascade provides better reconstruction results. It is demonstrated that
the proposed model features are all able to obtain improved performance.

3.3 Ablation Studies on Bottleneck Design in DC Blocks

To further verify the effectiveness of FR-DCB and show the influence of the
bottleneck design in conventional DC blocks, we remove the feature residual



8 J. Liu et al.

Table 2: Ablation Studies on Model Components Using 8× Acceleration.
method PSNR↑ SSIM↑ FID↓ KID↓

proposed 27.25 0.720 81.06 0.014
w/o FR-DCB 25.72 0.687 94.12 0.028
w/o dense cascade 27.02 0.713 85.82 0.019

Table 3: Ablation on Feature Connection in FR-DCB Using 8× Acceleration.
method PSNR↑ SSIM↑ FID↓ KID↓

proposed 27.25 0.720 81.06 0.014
w/o DC shortcut 26.91 0.713 88.81 0.023

shortcut in FR-DCB and implement the update rule as shown below,

h← f∗(γf(h) + (1− γ)DC(f(h))), (9)

which is mathematically equivalent to those used in [1, 12, 19], where f∗ and
f can be omitted and absorbed into sub-networks. We present the results in
Table 3. It shows that the update rule in (9) reduces PSNR and SSIM scores
and concomitantly increases FID and KID, which indicates the adverse impact
of the bottleneck design in conventional DC blocks and confirms the efficacy of
the proposed FR-DCB.

4 Conclusions and Discussion

A novel GAN-based deep neural network framework is introduced in this paper
to provide an end-to-end solution to the high-fidelity MRI reconstruction prob-
lem. The framework incorporates a novel data consistency block and a densely
connected cascade structure to improve the model performance in recovering ac-
celerated MR images with rich structural and textural details. In experiments,
the proposed approach achieves superior high-quality reconstruction results with
a high acceleration factor in a comparison with other deep learning-based meth-
ods both qualitatively and quantitatively, using FastMRI Knee dataset. The
future researches include extending the method to parallel imaging, accelerating
model deployments, and applying it to other texture-rich MRI imaging modali-
ties.
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