Abstract
Since its advent in the last century, magnetic resonance imaging (MRI) provides a radiation-free diagnosis tool and has revolutionized medical imaging. Compressed sensing (CS) methods leverage the sparsity prior of signals to reconstruct clean images from under-sampled measurements and accelerate the acquisition process. However, it is challenging to reduce strong aliasing artifacts caused by under-sampling and produce high-quality reconstructions with fine details. In this paper, we propose a novel GAN-based framework to recover the under-sampled images, which is characterized by a novel data consistency block and a densely connected network cascade used to improve the model performance in visual inspection and evaluation metrics. The role of each proposed block has been challenged in the ablation study, in terms of reconstruction quality metrics, using texture-rich FastMRI Knee image dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aggarwal, H., Mani, M., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019). https://doi.org/10.1109/TMI.2018.2865356
Anuroop, S., Jure, Z., Tullie, M., Lawrence, Z., Aaron, D., K.S., D.: GrappaNet: combining parallel imaging with deep learning for multi-coil MRI reconstruction. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14303–14310 (2020). https://doi.org/10.1109/CVPR42600.2020.01432
Bińkowski, M., Sutherland, D., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: International Conference on Learning Representations (2018)
Duan, J., et al.: VS-Net: variable splitting network for accelerated parallel MRI reconstruction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 713–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_78
Fair, M., Gatehouse, P., DiBella, E., Firmin, D.: A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 17, 68 (2015). https://doi.org/10.1186/s12968-015-0162-9
Gatys, L., Ecker, A., Bethge, M.: Image style transfer using convolutional neural networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016). https://doi.org/10.1109/CVPR.2016.265
Goodfellow, I., Pouget, A., Mirza, M., Xu, B., Warde, F., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)
Griswold, M., Jakob, P., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). https://doi.org/10.1002/mrm.10171
Hammernik, k., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977
Hong, M., Yu, Y., Wang, H., Liu, F., Crozier, S.: Compressed sensing MRI with singular value decomposition-based sparsity basis. Phys. Med. Biol. 56, 6311–6325 (2021)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626 (2019). https://doi.org/10.1109/ISBI.2019.8759423
Lee, D., Yoo, J., Tak, S., Ye, J.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018)
Lingala, S., Jacob, M.: Blind compressive sensing dynamic MRI. IEEE Trans. Med. Imaging 32(6), 1132–1145 (2013)
Liu, J., Yaghoobi, M.: Fine-grained MRI reconstruction using attentive selection generative adversarial networks. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1155–1159 (2021)
Mao, X., Li, Q., Xie, H., Lau, R., Wang, Z., Smolley, S.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821 (2017)
Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S., Zaharchuk, G., Xing, L., Pauly, J.M.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019). https://doi.org/10.1109/TMI.2018.2858752
Narnhofer, D., Hammernik, K., Knoll, F., Pock, T.: Inverse GANs for accelerated MRI reconstruction. Wavel. Sparsity XVIII 11138, 111381A (2019). https://doi.org/10.1117/12.2527753
Schlemper, J., Caballero, J., Hajnal, J., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018). https://doi.org/10.1109/TMI.2017.2760978
Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7
Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)
Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. Adv. Neural Inf. Process. Syst. 29, 1–9 (2016)
Yuan, Z., et al.: SARA-GAN: self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Front. Neuroinform. 14, 1–12 (2020). https://doi.org/10.3389/fninf.2020.611666
Zbontar, J., et al.: FastMRI: an open dataset and benchmarks for accelerated MRI. CoRR abs/1811.08839 (2018)
Zhang, C., Liu, Y., Shang, F., Li, Y., Liu, H.: A novel learned primal-dual network for image compressive sensing. IEEE Access 9, 26041–26050 (2021). https://doi.org/10.1109/ACCESS.2021.3057621
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, J., Qin, C., Yaghoobi, M. (2022). High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors. In: Haq, N., Johnson, P., Maier, A., Qin, C., Würfl, T., Yoo, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2022. Lecture Notes in Computer Science, vol 13587. Springer, Cham. https://doi.org/10.1007/978-3-031-17247-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-17247-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17246-5
Online ISBN: 978-3-031-17247-2
eBook Packages: Computer ScienceComputer Science (R0)