Abstract
Pathology is the gold standard for cancer diagnosis. Numerous studies aim to automate the diagnosis based on digital slides, yet its prognostic utilities lack adequate investigation. Besides the inherent difficulties in predicting a patient’s prognosis, extracting informative features from gigapixel and heterogeneous whole slide images (WSI) remains an open challenge. We present a computational pipeline that can generate an embedded map to flexibly profile different cell populations’ local and global composition and architecture on WSIs. Our approach allows researchers to investigate tumor cells and tumor microenvironment based on these embedded maps of a reasonable size rather than dealing with gigantic WSIs. Here, we applied this pipeline to extract the texture patterns for tumor and immune cell types on the TCGA lung adenocarcinoma dataset. Based on extensive survival modeling, we have demonstrated that by pruning redundant and irrelevant features, the final prediction model has achieved an optimal C-index of 0.70 during testing. Our proof-of-concept study proves that the efficient local-global embedded maps bear valuable information with clinical correlations in lung cancer and potentially in other cancer types, warranting further investigations.
P. Chen, M. B. Saad and F. R. Rojas—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index for survival data. Stat. Med. 24(24), 3927–3944 (2005)
Budczies, J., et al.: Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS ONE 7(12), e51862 (2012)
Chen, P., Liang, Y., Shi, X., Yang, L., Gader, P.: Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion. Neurocomputing 453, 312–325 (2021)
Chen, P., Shi, X., Liang, Y., Li, Y., Yang, L., Gader, P.D.: Interactive thyroid whole slide image diagnostic system using deep representation. Comput. Methods Programs Biomed. 195, 105630 (2020)
Diao, S., et al.: Computer-aided pathologic diagnosis of nasopharyngeal carcinoma based on deep learning. Am. J. Pathol. 190(8), 1691–1700, e51862 (2020)
Diao, S., et al.: Weakly supervised framework for cancer region detection of hepatocellular carcinoma in whole-slide pathologic images based on multiscale attention convolutional neural network. Am. J. Pathol. 192(3), 553–563 (2022)
El Hussein, S., et al.: Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia. J. Pathol. 256(1), 4–14 (2022)
Gamper, J., Alemi Koohbanani, N., Benet, K., Khuram, A., Rajpoot, N.: PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification. In: Reyes-Aldasoro, C.C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 11–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23937-4_2
Graham, S., et al.: HoVer-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)
Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Hekler, A., et al.: Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur. J. Cancer 115, 79–83 (2019)
Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20
Lu, C., et al.: Feature-driven local cell graph (FLocK): new computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers. Med. Image Anal. 68, 101903 (2021)
Lu, C., Lewis, J.S., Dupont, W.D., Plummer, W.D., Janowczyk, A., Madabhushi, A.: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod. Pathol. 30(12), 1655–1665 (2017)
Lu, M.Y., et al.: AI-based pathology predicts origins for cancers of unknown primary. Nature 594(7861), 106–110 (2021)
Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)
Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)
Viswanathan, V.S., Toro, P., Corredor, G., Mukhopadhyay, S., Madabhushi, A.: The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 257, 413–429 (2022)
Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9(1), 1–8 (2019)
Wu, J., Mayer, A.T., Li, R.: Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. In: Seminars in Cancer Biology. Elsevier (2020)
Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)
Zhang, Z., et al.: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1(5), 236–245 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, P. et al. (2022). Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-17266-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17265-6
Online ISBN: 978-3-031-17266-3
eBook Packages: Computer ScienceComputer Science (R0)