Skip to main content

Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2022)

Abstract

Pathology is the gold standard for cancer diagnosis. Numerous studies aim to automate the diagnosis based on digital slides, yet its prognostic utilities lack adequate investigation. Besides the inherent difficulties in predicting a patient’s prognosis, extracting informative features from gigapixel and heterogeneous whole slide images (WSI) remains an open challenge. We present a computational pipeline that can generate an embedded map to flexibly profile different cell populations’ local and global composition and architecture on WSIs. Our approach allows researchers to investigate tumor cells and tumor microenvironment based on these embedded maps of a reasonable size rather than dealing with gigantic WSIs. Here, we applied this pipeline to extract the texture patterns for tumor and immune cell types on the TCGA lung adenocarcinoma dataset. Based on extensive survival modeling, we have demonstrated that by pruning redundant and irrelevant features, the final prediction model has achieved an optimal C-index of 0.70 during testing. Our proof-of-concept study proves that the efficient local-global embedded maps bear valuable information with clinical correlations in lung cancer and potentially in other cancer types, warranting further investigations.

P. Chen, M. B. Saad and F. R. Rojas—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://portal.gdc.cancer.gov/.

  2. 2.

    https://tcga.xenahubs.net.

References

  1. Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index for survival data. Stat. Med. 24(24), 3927–3944 (2005)

    Article  MathSciNet  Google Scholar 

  2. Budczies, J., et al.: Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS ONE 7(12), e51862 (2012)

    Google Scholar 

  3. Chen, P., Liang, Y., Shi, X., Yang, L., Gader, P.: Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion. Neurocomputing 453, 312–325 (2021)

    Article  Google Scholar 

  4. Chen, P., Shi, X., Liang, Y., Li, Y., Yang, L., Gader, P.D.: Interactive thyroid whole slide image diagnostic system using deep representation. Comput. Methods Programs Biomed. 195, 105630 (2020)

    Google Scholar 

  5. Diao, S., et al.: Computer-aided pathologic diagnosis of nasopharyngeal carcinoma based on deep learning. Am. J. Pathol. 190(8), 1691–1700, e51862 (2020)

    Google Scholar 

  6. Diao, S., et al.: Weakly supervised framework for cancer region detection of hepatocellular carcinoma in whole-slide pathologic images based on multiscale attention convolutional neural network. Am. J. Pathol. 192(3), 553–563 (2022)

    Google Scholar 

  7. El Hussein, S., et al.: Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia. J. Pathol. 256(1), 4–14 (2022)

    Google Scholar 

  8. Gamper, J., Alemi Koohbanani, N., Benet, K., Khuram, A., Rajpoot, N.: PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification. In: Reyes-Aldasoro, C.C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 11–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23937-4_2

  9. Graham, S., et al.: HoVer-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Google Scholar 

  10. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  11. Hekler, A., et al.: Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur. J. Cancer 115, 79–83 (2019)

    Google Scholar 

  12. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20

  13. Lu, C., et al.: Feature-driven local cell graph (FLocK): new computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers. Med. Image Anal. 68, 101903 (2021)

    Google Scholar 

  14. Lu, C., Lewis, J.S., Dupont, W.D., Plummer, W.D., Janowczyk, A., Madabhushi, A.: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod. Pathol. 30(12), 1655–1665 (2017)

    Article  Google Scholar 

  15. Lu, M.Y., et al.: AI-based pathology predicts origins for cancers of unknown primary. Nature 594(7861), 106–110 (2021)

    Google Scholar 

  16. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  Google Scholar 

  17. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Google Scholar 

  18. Viswanathan, V.S., Toro, P., Corredor, G., Mukhopadhyay, S., Madabhushi, A.: The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 257, 413–429 (2022)

    Google Scholar 

  19. Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  20. Wu, J., Mayer, A.T., Li, R.: Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. In: Seminars in Cancer Biology. Elsevier (2020)

    Google Scholar 

  21. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Google Scholar 

  22. Zhang, Z., et al.: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1(5), 236–245 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, P. et al. (2022). Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17266-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17265-6

  • Online ISBN: 978-3-031-17266-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics