Skip to main content

Overview of Information System Testing Technology Under the “CLOUD + MIcroservices” Mode

  • Conference paper
  • First Online:
Computer and Communication Engineering (CCCE 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1630))

Included in the following conference series:

  • 288 Accesses

Abstract

With the continuous development of military theory, cloud computing platform and microservice technology are constantly applied to combat information platform. Under this trend, it has gradually become an urgent demand to ensure the quality of combat information system under the “Cloud + Microservice” mode. However, current studies mostly focus on a single technical point or aspect of the testing for military information system under the “Cloud + Microservice” mode, which lack of an overall summarization of its testing schema. Therefore, based on the relevant testing technologies of cloud platform, microservice and rapid environment construction in recent years, this paper summarizes and puts forward a framework for the testing of information system under the “Cloud + Microservice” mode, and systematically discusses the 3 important aspects of the framework: testing towards cloud platform, testing towards microservice applications and rapid construction of testing environment. The testing framework proposed in this paper can provide top-level guidance for the testing of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baset, S., Silva, M., Wakou, N.: Spec cloud™ IaaS 2016 benchmark. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, pp. 423–423 (2017)

    Google Scholar 

  2. Herbst, N.R., Kounev, S., Weber, A., et al.: Bungee: an elasticity benchmark for self-adaptive IAAS cloud environments. In: 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 46–56. IEEE (2015)

    Google Scholar 

  3. Makhija, V., Herndon, B., Smith, P., et al.: VMmark: a scalable benchmark for virtualized systems. Technical Report TR 2006–002, VMware (2006)

    Google Scholar 

  4. Menascé, D.A.: TPC-W: a benchmark for e-commerce. IEEE Internet Comput. 6(3), 83–87 (2002)

    Article  Google Scholar 

  5. He, Q.: The Research on Key Technology in Deduplication on Cloud Storage. Northwest University of Technology (2016)

    Google Scholar 

  6. Lv, D.: Research on the Perfromance Evaluation for Cloud Platform. Harbin Institute of Technology (2014)

    Google Scholar 

  7. Seppo, J.: Sirkemaa, information systems management – understanding modular approach. J. Adv. Inf. Technol. 10(4), 148–151 (2019). https://doi.org/10.12720/jait.10.4.148-151

    Article  Google Scholar 

  8. De Camargo, A., Salvadori, I., Mello, R.S., et al.: An architecture to automate performance tests on microservices. In: Proceedings of the 18th International Conference on Information Integration and Web-Based Applications and Services, pp. 422–429 (2016)

    Google Scholar 

  9. Rahman, M., Chen, Z., Gao, J.: A service framework for parallel test execution on a developer’s local development workstation. In: 2015 IEEE Symposium on Service-Oriented System Engineering, pp. 153–160. IEEE (2015)

    Google Scholar 

  10. Meinke, K., Nycander, P.: Learning-based testing of distributed microservice architectures: correctness and fault injection. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 3–10. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49224-6_1

    Chapter  Google Scholar 

  11. Kargar, M.J., Hanifizade, A.: Automation of regression test in microservice architecture. In: 2018 4th International Conference on Web Research (ICWR), pp. 133–137. IEEE (2018)

    Google Scholar 

  12. Rajagopalan, S., Jamjoom, H.: App–bisect: autonomous healing for microservice-based apps. In: 7th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 15) (2015)

    Google Scholar 

  13. Shang-Pin, M.,Chen-Yuan, F., Yen, C., I-Hsiu, L., Ci-Wei, L.: Graph-based and scenario-driven microservice analysis, retrieval, and testing. Future Gener. Comput. Syst.100, 724–735 (2019)

    Google Scholar 

  14. Wenhai, L., Xin, P., Dan, D., et al.: Method of microservice system debugging based on log visualization analysis. Comput. Sci. 46(11), 145–155 (2019)

    Google Scholar 

  15. Katherine, A.V., Alagarsamy, K.: Software testing in cloud platform: a survey. Int. J. Comput. Appl. 46(6), 21–25 (2012)

    Google Scholar 

  16. Tangirala, S.: Efficient big data analytics and management through the usage of cloud. Architecture 7(4), 302–307 (2016). https://doi.org/10.12720/jait.7.4.302-307

    Article  Google Scholar 

  17. Shams, A., Sharif, H., Helfert, M.: A novel model for cloud computing analytics and measurement. J. Adv. Inf. Technol. 12(2), 93–106 (2021). https://doi.org/10.12720/jait.12.2.93-106

    Article  Google Scholar 

  18. Hazra, D., Roy, A., Midya, S., et al.: Distributed task scheduling in cloud platform: a survey. In: Satapathy, S., Bhateja, V., Das, S. (eds.) Smart computing and informatics, vol. 77, pp. 183–191. Springer, Singapore, (2018). https://doi.org/10.1007/978-981-10-5544-7_19

  19. Marozzo, F.: Infrastructures for high-performance computing: cloud infrastructures (2019)

    Google Scholar 

  20. Bertolino, A., Angelis, G.D., Gallego, M., et al.: A systematic review on cloud testing. ACM Comput. Surv. (CSUR) 52(5), 1–42 (2019)

    Article  Google Scholar 

  21. Souri, A., Navimipour, N.J., Rahmani, A.M.: Formal verification approaches and standards in the cloud computing: a comprehensive and systematic review. Comput. Stand. Interfaces 58, 1–22 (2018)

    Article  Google Scholar 

  22. Sarabdeen, J., Ishak, M.M.M.: Impediment of privacy in the use of clouds by educational. Institutions 6(3), 167–172 (2015). https://doi.org/10.12720/jait.6.3.167-172

    Article  Google Scholar 

  23. Mohamed, S., Hadj, B.: Mobile cloud computing: security issues and considerations. 6(4), 248–251 (2015). https://doi.org/10.12720/jait.6.4.248-251

  24. Osman, G., et al.: Security measurement as a trust in cloud computing service selection and monitoring. 8(2), 100–106 (2017). https://doi.org/10.12720/jait.8.2.100-106

  25. Cornetta, G., Mateos, J., Touhafi, A., et al.: Design, simulation and testing of a cloud platform for sharing digital fabrication resources for education. J. Cloud Comput. 8(1), 1–22 (2019)

    Article  Google Scholar 

  26. Kotas, C., Naughton, T., Imam, N.: A comparison of amazon web services and microsoft azure cloud platforms for high performance computing. In: 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–4. IEEE (2018)

    Google Scholar 

  27. Arif, H., Hajjdiab, H., Al Harbi, F., et al.: A comparison between Google cloud service and iCloud. In: 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), pp. 337–340. IEEE (2019)

    Google Scholar 

  28. Mahmud, K., Usman, M.: Trust establishment and estimation in cloud services: a systematic literature review. J. Netw. Syst. Manage. 27(2), 489–540 (2019)

    Article  Google Scholar 

  29. Liu, H., Niu, Z., Wu, T., et al.: A performance evaluation method of load balancing capability in SaaS layer of cloud platform. J. Phys. Conf. Ser. 1856(1), 012065 (2021)

    Google Scholar 

  30. Lin, Q., Hsieh, K., Dang, Y., et al.: Predicting node failure in cloud service systems. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 480–490 (2018)

    Google Scholar 

  31. Bai, X., Li, M., Chen, B., et al.: Cloud testing tools. In: Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE), pp. 1–12. IEEE (2011)

    Google Scholar 

  32. Addo, I.D., Ahamed, S.I., Chu, W.C.: A reference architecture for high-availability automatic failover between PaaS cloud providers. In: 2014 International Conference on Trustworthy Systems and their Applications, pp. 14–21. IEEE (2014)

    Google Scholar 

  33. Burns, B.: Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services. O’Reilly Media, Inc., Sebastopol (2018)

    Google Scholar 

  34. Zhang, T., Gao, J., Cheng, J., et al.: Compatibility testing service for mobile applications. In: 2015 IEEE Symposium on Service-Oriented System Engineering, pp. 179–186. IEEE (2015)

    Google Scholar 

  35. Jeevitha, L., Umadevi, B., Hemavathy, M.: SATA Protocol implementation on FPGA for write protection of hard disk drive/Solid state device. In: 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 614–617. IEEE (2019)

    Google Scholar 

  36. Bezrukov, I.A., Salnikov, A.I., Yakovlev, V.A., et al.: A data buffering and transmission system: a study of the performance of a disk subsystem. Instrum. Exp. Tech. 61(4), 467–472 (2018)

    Article  Google Scholar 

  37. Xu, E., Zheng, M., Qin, F., et al.: Lessons and actions: what we learned from 10k SSD-related storage system failures. In: 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19), pp. 961–976 (2019)

    Google Scholar 

  38. Yoon, I.C., Sussman, A., Memon, A., et al.: Effective and scalable software compatibility testing. In: Proceedings of the 2008 international symposium on Software Testing and Analysis, pp. 63–74 (2008)

    Google Scholar 

  39. Feyzi, F., Parsa, S.: Kernel-based detection of coincidentally correct test cases to improve fault localisation effectiveness. Int. J. Appl. Pattern Recogn. 5(2), 119–136 (2018)

    Article  Google Scholar 

  40. Liu, C., Yang, H., Sun, R., et al.: Swtvm: exploring the automated compilation for deep learning on sunway architecture. arXiv preprint arXiv:1904.07404 (2019)

  41. Tahvili, S., Hatvani, L., Felderer, M., et al.: Automated functional dependency detection between test cases using doc2vec and clustering. In: 2019 IEEE International Conference on Artificial Intelligence Testing (AITest), pp. 19–26. IEEE (2019)

    Google Scholar 

  42. Feng Zhiyong, X., Yanwei, X.X., Shizhan, C.: Review on the development of microservice architecture. J. Comput. Res. Dev. 57(5), 1103–1122 (2020). https://doi.org/10.7544/issn1000-1239.2020.20190460

    Article  Google Scholar 

  43. Chun-xia, L.: Research overview of microservices architecture. Softw. Guide 18(8), 1–3,7 (2019) https://doi.org/10.11907/rjdk.182825

  44. Muhammad, W., Peng, L., Mojtaba, S., Amleto, D.S., Gastón, M.: Design, monitoring, and testing of microservices systems: the practitioners’ perspective. J. Syst. Softw. 182, 111061 (2021)

    Google Scholar 

  45. Jie, D.: Research on application performance test method based on microservice architecture. Digital User 27(3), 72–75 (2021)

    Google Scholar 

  46. Zhou, Y., Kan, L., Peng, Z.: Design of test platform based on micro service architecture and continuous delivery technology. China Comput. Commun. 23, 76–77 (2017)

    Google Scholar 

  47. Chang, Y.: Design and Development of Interface Automation Test Services and Report Generation based on Microservices Architecture. Inner Mongolia University, Inner Mongolia (2019)

    Google Scholar 

  48. Yuanbing, Z.: Automated testing based on microservices architecture. Electron. Technol. Softw. Eng. 4, 119–120 (2019)

    Google Scholar 

  49. Huayao, W., Wenjun, D.: Research progress on the development of microservices. Comput. Res. Dev. 57(3), 525–541 (2020). https://doi.org/10.7544/issn1000-1239.2020.20190624

    Article  Google Scholar 

  50. Shengji, Q.: Brief introduction to MOCK testing technology in microservice system. Digital User 24(23), 89 (2018). https://doi.org/10.3969/j.issn.1009-0843.2018.23.080

    Article  Google Scholar 

  51. Zhou, Y., Kan, L., Peng, Z.: Analysis of software testing mode transformation under microservice architecture. Comput. Knowl. Technol. 13(35), 83–84 (2017)

    Google Scholar 

  52. Chen, J., Chen, M., Pu, Y.: B/S system performance analysis based on microservices architecture. Comput. Syst. Appl. 29(02), 233–237 (2020). https://doi.org/10.15888/j.cnki.csa.007285

  53. Rahman, M., Gao, J.: A reusable automated acceptance testing architecture for microservices in behavior-driven development (2015)

    Google Scholar 

  54. Bento, A., Correia, J., Filipe, R., et al.: Automated analysis of distributed tracing: challenges and research directions. J. Grid Comput. 19(1), 1–15 (2021)

    Article  Google Scholar 

  55. Hao, D., Xie, T., Zhang, L., et al.: Test input reduction for result inspection to facilitate fault localization. Autom. Softw. Eng. 17(1), 5–31 (2010)

    Article  Google Scholar 

  56. Lei, Q.: Microservice performance simulation test based on Kubemark. Comput. Eng. Sci. 42(07), 1151–1157 (2020)

    Google Scholar 

  57. Xuan, M.: Researchs on Microservice Invocation Based on Spring Cloud. Wuhan University of Technology, China (2018)

    Google Scholar 

  58. Shan, S., Marcela, R., Jiting, X., Chris, S., Nanditha, P., Russell, S.: Cost study of test automation over documentation for microservices. In: Proceedings of 2018 International Conference on Computer Science and Software Engineering (CSSE 2018), pp. 290–305 (2018)

    Google Scholar 

  59. Chang, Y.: Design and Development of Interface Automation Test Services and Test Report Generation Based on Microservices Architecture. Inner Mongolia University (2019)

    Google Scholar 

  60. Jingyi, X.U., Zeyu, Z.H.A.O., Minhu, S.H.E.N., Yibin, Y.I.N.G., Weiqiang, Z.H.O.U.: Next generation IP network test system framework based on microservices architecture. Telecom Sci. 35(09), 29–37 (2019)

    Google Scholar 

  61. Tian, B., Wang, W., Su, Q., et al.: Research on application performance monitoring platform based on microservice architecture. Inf. Technol. Inf. (1), 125–128 (2018). https://doi.org/10.3969/j.issn.1672-9528.2018.01.030

  62. Bi, X., Liu, Y., Chen, F.: Research and optimization of network performance of micro-service application platform. Comput. Eng. 44(5), 53–59 (2018). https://doi.org/10.19678/j.issn.1000-3428.0047130

  63. Binghu, Y.: Design and implementation of mobile application security detection system based on microservice architecture. Digital Technol. Appl. 36(11), 169–171 (2018). https://doi.org/10.19695/j.cnki.cn12-1369.2018.11.91

    Article  Google Scholar 

  64. Qian, Z., Kan, L., Zhou, Y.: Analysis of mobile application compatibility test implementation of testing cloud platform based on micro-service architecture. Sci. Technol. Inf. 16(28), 19–20 (2018). https://doi.org/10.16661/j.cnki.1672-3791.2018.28.019

    Article  Google Scholar 

  65. Xing, X., Yinqiao, L., Xuefeng, L., et al.: Rapid deployment for enterprise development and test environment. Ind. Control Comput. 31(3), 12–14 (2018)

    Google Scholar 

  66. Yuming, Z.: Research on Resource Collaboration and Adaption Mechanisms in Smart Identifier Networking for Edge Computing. Beijing Jiaotong University, China (2021)

    Google Scholar 

  67. Bo, L., Jianglong, W., Qianying, Z., et al.: Novel network virtualization architecture based on the convergence of computing, storage and transport resources. Telecomm. Sci. 36(7), 42–54 (2020)

    Google Scholar 

  68. Zhengfeng, J., Keyi, Q., Meiyu, Z.: Two-stage edge service composition and scheduling method for edge computing QoE. J. Chinese Comput. Syst. 40(07), 1397–1403 (2019)

    Google Scholar 

  69. Hejji, D.J., Nassif, A.B., Nasir, Q., et al.: Systematic literature review: metaheuristics-based approach for workflow scheduling in cloud. In: 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), pp. 1–5 (2020)

    Google Scholar 

  70. Wei, Y., Pan, L., Liu, S., et al.: DRL-scheduling: an intelligent QoS-aware job scheduling framework for applications in clouds. IEEE Access 6, 55112–55125 (2018)

    Article  Google Scholar 

  71. Ya, L., Li, L., Xilin, Z.: Research on virtual machine static migration technology based on KVM. Sci. Technol. Innov. 25, 85–86 (2021)

    Google Scholar 

  72. Kai, W., Gongxuan, Z., Xiumin, Z.: Research on virtualization technology based on container. Comput. Technol. Dev. 000(008), 138–141 (2015)

    Google Scholar 

  73. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., et al.: ContainerCloudSim: an environment for modeling and simulation of containers in cloud data centers. Soft. Pract. Exp. 47(4), 505–521 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunlong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Jiang, S., Wang, K., Wang, R., Liu, Q., Yuan, X. (2022). Overview of Information System Testing Technology Under the “CLOUD + MIcroservices” Mode. In: Neri, F., Du, KL., Varadarajan, V.K., Angel-Antonio, SB., Jiang, Z. (eds) Computer and Communication Engineering. CCCE 2022. Communications in Computer and Information Science, vol 1630. Springer, Cham. https://doi.org/10.1007/978-3-031-17422-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17422-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17421-6

  • Online ISBN: 978-3-031-17422-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics