Abstract
The Multivariate Quadratic (\(\textsf {MQ}\)) problem consists in finding the solutions of a given system of m quadratic equations in n unknowns over a finite field, and it is an NP-complete problem of fundamental importance in computer science. In particular, the security of some cryptosystems against the so-called algebraic attacks is usually given by the hardness of this problem. Many algorithms to solve the \(\textsf {MQ}\) problem have been proposed and studied. Estimating precisely the complexity of all these algorithms is crucial to set secure parameters for a cryptosystem. This work collects and presents the most important classical algorithms and the estimates of their computational complexities. Moreover, it describes a software that we wrote and that makes possible to estimate the hardness of a given instance of the \(\textsf {MQ}\) problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Every row of the Macaulay matrix can be compute on the fly, but it will introduce an overhead in the time complexity.
- 2.
The factor \(8k \log n\) comes from the expected complexity of the Valiant-Vazirani isolation’s algorithm with probability \(1 - 1/n\), see [16, Sec. 2.5] for more details.
- 3.
For instance, for the Type IV parameters where \(n=66\), the authors used several Spartan-6 FPGAs to break the challenge. There the authors implemented the \(\textsf {FES}\) algorithm to solve a system with 48 variables and equations. Such particular implementation allowed them to test \(2^{10}\) potential solutions per clock cycle, which means they are computing at least \(2^{10}\) bit operations per clock cycle.
References
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive, Report 2015/046 (2015). https://eprint.iacr.org/2015/046
Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 522–539 (2021)
Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between XL and Gröbner basis algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_24
Ayad, A.: A survey on the complexity of solving algebraic systems. Int. Math. Forum 5(5–8), 333–353 (2010)
Barbero, S., Bellini, E., Sanna, C., Verbel, J.: Practical complexities of probabilistic algorithms for solving Boolean polynomial systems. Discret. Appl. Math. 309, 13–31 (2022)
Bard, G.V.: Algorithms for Solving Linear and Polynomial Systems of Equations over Finite Fields with Applications to Cryptanalysis. Theses, University of Maryland (2007)
Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. J. Symb. Comput. 70, 49–70 (2015). https://doi.org/10.1016/j.jsc.2014.09.025
Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013). https://doi.org/10.1016/j.jco.2012.07.001
Bellini, E., Makarim, R., Verbel, J.: An estimator for the complexity of the \({MQ}\) problem (2021). https://github.com/Crypto-TII/multivariate_quadratic_estimator
Bellini, E., Esser, A.: Syndrome decoding estimator (2021). https://github.com/Crypto-TII/syndrome_decoding_estimator
Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7
Bernstein, D.J., Yang, B.-Y.: Asymptotically faster quantum algorithms to solve multivariate quadratic equations. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 487–506. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_23
Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7
Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13
Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_17
Björklund, A., Kaski, P., Williams, R.: Solving systems of polynomial equations over GF(2) by a parity-counting self-reduction. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) International Colloquium on Automata, Languages and Programming - ICALP 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.26
Bouillaguet, C., et al.: Fast exhaustive search for polynomial systems in \({\mathbb{F}_2}\). In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_14
Bouillaguet, C., Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Fast exhaustive search for quadratic systems in \(\mathbb{F}_{2}\) on FPGAs. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 205–222. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_11
Buchmann, J.A., Ding, J., Mohamed, M.S.E., Mohamed, W.S.A.E.: MutantXL: solving multivariate polynomial equations for cryptanalysis. In: Handschuh, H., Lucks, S., Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009). https://drops.dagstuhl.de/opus/volltexte/2009/1945
Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.: GeMSS: a great multivariate short signature. NIST CSRC (2017). https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: SOFIA: \(\cal{MQ}\)-based signatures in the QROM. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_1
Chen, M.S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: MQDSS specifications (2020). https://mqdss.org/specification.html
Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Solving quadratic equations with XL on parallel architectures. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 356–373. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_21
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27
Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3_15
Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e. Undergraduate Texts in Mathematics, Springer, New York (2007)
Dickenstein, A., Emiris, I.Z.: Solving Polynomial Equations. Foundations, Algorithms, and Applications, Algorithms and Computation in Mathematics, vol. 14. Springer, Heidelberg (2005)
Ding, J., Chen, M., Petzoldt, A., Schmidt, D., Yang, B.: Rainbow. NIST CSRC (2017). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions
Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12
Ding, J., Zhang, Z., Deaton, J.: How much can F5 really do. Cryptology ePrint Archive, Report 2021/051 (2021). https://eprint.iacr.org/2021/051
Dinur, I.: Cryptanalytic applications of the polynomial method for solving multivariate equation systems over GF(2). In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 374–403. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_14
Dinur, I.: Improved algorithms for solving polynomial systems over GF(2) by multiple parity-counting. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2550–2564 (2021). https://doi.org/10.1137/1.9781611976465.151
Duarte, J.D.: On the complexity of the crossbred algorithm. Cryptology ePrint Archive, Report 2020/1058 (2020). https://eprint.iacr.org/2020/1058
Eder, C., Faugère, J.C.: A survey on signature-based algorithms for computing Gröbner bases. J. Symb. Comput. 80, 719–784 (2017)
Esser, A., Bellini, E.: Syndrome decoding estimator. Cryptology ePrint Archive, Report 2021/1243 (2021). https://ia.cr/2021/1243
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1), 61–88 (1999)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. Association for Computing Machinery, New York (2002)
Faugère, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.: Fast quantum algorithm for solving multivariate quadratic equations. CoRR abs/1712.07211 (2017)
Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Furue, H., Nakamura, S., Takagi, T.: Improving Thomae-Wolf algorithm for solving underdetermined multivariate quadratic polynomial problem. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 65–78. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_4
Furue, H., Duong, D., Takagi, T.: An efficient MQ-based signature with tight security proof. Int. J. Netw. Comput. 10(2), 308–324 (2020). https://www.ijnc.org/index.php/ijnc/article/view/238
Fusco, G., Bach, E.: Phase transition of multivariate polynomial systems. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 632–645. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_58
Gashkov, S.B., Sergeev, I.S.: Complexity of computations in finite fields. Fundam. Prikl. Mat. 17(4), 95–131 (2011/12)
Hashimoto, Y.: Algorithms to solve massively under-defined systems of multivariate quadratic equations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E94.A(6), 1257–1262 (2011). https://doi.org/10.1587/transfun.E94.A.1257
Huang, H., Bao, W.: Algorithm for solving massively underdefined systems of multivariate quadratic equations over finite fields (2015)
Ito, T., Shinohara, N., Uchiyama, S.: An efficient \(F_4\)-style based algorithm to solve MQ problems. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 37–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_3
Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial systems. In: Kaczorowski, J., Pieprzyk, J., Pomykała, J. (eds.) NuTMiC 2017. LNCS, vol. 10737, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76620-1_1
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15
Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12868-9_99
Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R., Yu, H.: Beating brute force for systems of polynomial equations over finite fields. In: Symposium on Discrete Algorithms, SODA 2017, pp. 2190–2202. Society for Industrial and Applied Mathematics, USA (2017)
Makarim, R.H., Stevens, M.: M4GB: an efficient Gröbner-basis algorithm. In: Burr, M.A., Yap, C.K., Din, M.S.E. (eds.) Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2017, Kaiserslautern, Germany, pp. 293–300. ACM (2017). https://doi.org/10.1145/3087604.3087638
Miura, H., Hashimoto, Y., Takagi, T.: Extended algorithm for solving underdefined multivariate quadratic equations. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 118–135. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_8
Moody, D.: The homestretch: the beginning of the end of the NIST PQC 3rd round. In: International Conference on Post-Quantum Cryptography (2021). https://pqcrypto2021.kr/download/program/2.2_PQCrypto2021.pdf
Mou, C.: Solving Polynomial Systems over Finite Fields: Algorithms, Implementation and Applications. Theses, Université Pierre et Marie Curie (2013)
Niederhagen, R.: Parallel cryptanalysis. Ph.D. thesis, Eindhoven University of Technology (2012). https://polycephaly.org/thesis/index.shtml
Ning, K.C.: An adaption of the crossbred algorithm for solving multivariate quadratic systems over \(\mathbb{F} _2\) on GPUs (2017). https://pure.tue.nl/ws/portalfiles/portal/91105984/NING.K_parallel_cb_v103.pdf
NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2017). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_40
Schwabe, P., Westerbaan, B.: Solving binary \(\cal{MQ}\) with Grover’s algorithm. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 303–322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_17
Seres, I.A., Horváth, M., Burcsi, P.: The Legendre pseudorandom function as a multivariate quadratic cryptosystem: security and applications. Cryptology ePrint Archive, Report 2021/182 (2021). https://ia.cr/2021/182
Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)
Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_10
Ullah, E.: New techniques for polynomial system solving. Theses, Universität Passau (2012)
Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_24
Yasuda, T., Dahan, X., Huang, Y.J., Takagi, T., Sakurai, K.: MQ challenge: hardness evaluation of solving multivariate quadratic problems. In: NIST Workshop on Cybersecurity in a Post-Quantum World, Washington, D.C (2015). https://www.mqchallenge.org
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bellini, E., Makarim, R.H., Sanna, C., Verbel, J. (2022). An Estimator for the Hardness of the MQ Problem. In: Batina, L., Daemen, J. (eds) Progress in Cryptology - AFRICACRYPT 2022. AFRICACRYPT 2022. Lecture Notes in Computer Science, vol 13503. Springer, Cham. https://doi.org/10.1007/978-3-031-17433-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-17433-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17432-2
Online ISBN: 978-3-031-17433-9
eBook Packages: Computer ScienceComputer Science (R0)