Skip to main content

SAR and Multispectral Data Contribution to the Monitoring of Wetland Ecosystems Vulnerable to Climate Change

  • Conference paper
  • First Online:
Geomatics for Green and Digital Transition (ASITA 2022)

Abstract

Wetlands ecosystems support a significant percentage of the world’s biodiversity and also provide a number of ecological services, such as carbon sequestration. These fragile ecosystems need to be monitored over time in order to better understand the ecological dynamics and changes within. The study areas are the marshland of the Ostiglia and Busatello marshes. Thus, geographic and climatic aspects have been investigated in order to better explain the dynamics of this ecosystem. The aims of this study were: (i) the evaluation of satellite instruments and methods for monitoring the health state of wetland ecosystems and the impacts of Climate Change; (ii) the investigation of seasonal dynamics of this wetland. The temperature, precipitation and humidity trends have been analyzed from 2016 to 2021. Time series of spectral indices (NDVI, NDMI and NMDI) and backscatter (VV and VH) have been extracted in order to analyze the trends of seasonal variation. To better understand the backscatter variation, the correlation between spectral indices and backscatter have been computed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 October 2022

    In the originally published chapter “SAR and Multispectral Data Contribution to the Monitoring of Wetland Ecosystems Vulnerable to Climate Change” the first-last name order was erroneously reversed for all authors. This has been corrected.

References

  1. Matthews, G.V.T.: The Ramsar Convention on Wetlands: its history and development. Ramsar Convention Bureau, March 1993

    Google Scholar 

  2. Keddy, P.A.: Wetland Ecology: Principles and Conservation (2010)

    Google Scholar 

  3. Lahn, B.: Changing climate change: the carbon budget and the modifying-work of the IPCC. Soc. Stud. Sci. 51(1), 3–27 (2021)

    Article  Google Scholar 

  4. Erwin, K.L.: Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol. Manage. 17(1), 71–84 (2009)

    Article  Google Scholar 

  5. Burkett, V., Kusler, J.: Climate change: potential impacts and interactions in wetlands of the United States. JAWRA J. Am. Water Resour. Assoc. 36(2), 313–320 (2000)

    Article  Google Scholar 

  6. Winter, T.C.: The vulnerability of wetlands to climate change: a hydrologic landscape perspective. JAWRA J. Am. Water Resour. Assoc. 36(2), 305–311 (2000)

    Article  Google Scholar 

  7. Fennessy, M.S., Jacobs, A.D., Kentula, M.E.: An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands 27(3), 543–560 (2007)

    Article  Google Scholar 

  8. Kayranli, B., Scholz, M., Mustafa, A., Hedmark, Å.: Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30(1), 111–124 (2010)

    Article  Google Scholar 

  9. Dawson, T.P., Berry, P.M., Kampa, E.: Climate change impacts on freshwater wetland habitats. J. Nat. Conserv. 11(1), 25–30 (2003)

    Article  Google Scholar 

  10. Temmink, R.J., et al.: Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376(6593), eabn1479 (2022)

    Google Scholar 

  11. Gardner, R.C., Davidson, N.C.: The Ramsar convention. In: LePage, B. (eds.) Wetlands, pp. 189–203. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0551-7_11

  12. Finlayson, C.M., Davidson, N., Pritchard, D., Milton, G.R., MacKay, H.: The Ramsar Convention and ecosystem-based approaches to the wise use and sustainable development of wetlands. J. Int. Wildlife Law Policy 14(3–4), 176–198 (2011)

    Google Scholar 

  13. Lovejoy, T.E.: Climate change and biodiversity (2006)

    Google Scholar 

  14. Cuizzi, D., et al.: Gestione delle zone umide e conservazione attiva degli habitat e delle specie di interesse comunitario. Il progetto LIFE-Natura 2000/IT7161 delle Paludi di Ostiglia (2005)

    Google Scholar 

  15. Franchini, D.A.: Il pirodiserbo come tecnica di gestione nella Riserva Naturale Regionale “Paludi di Ostiglia”: influenza su flora e fauna. Atti Convegno “Zone umide d’acqua dolce, Tecniche e strategie di gestione della vegetazione palustre”, Regione Lombardia e Comune di Ostiglia. Quad. Ris. Nat. Paludi di Ostiglia, vol. 1, pp. 59–70 (2000)

    Google Scholar 

  16. Franchini, D.A., Franchini, C.: Molluschi d’acqua dolce nelle torbe del Busatello: ricerche stratigrafiche. Bollettino malacologico 32, 11–18 (1996)

    Google Scholar 

  17. Hartmann, D.L.: Global physical climatology (2015)

    Google Scholar 

  18. Pellicone, G., Caloiero, T., Guagliardi, I.: The De Martonne aridity index in Calabria (Southern Italy). J. Maps 15(2), 788–796 (2019)

    Article  Google Scholar 

  19. Meng, M., Ni, J., Zhang, Z.G.: Aridity index and its applications in geo-ecological study. Chin. J. Plant Ecol. 28(6), 853 (2004)

    Google Scholar 

  20. Jahangir, M.H., Arast, M.: Remote sensing products for predicting actual evapotranspiration and water stress footprints under different land cover. J. Clean. Prod. 266, 121818 (2020)

    Article  Google Scholar 

  21. Gao, B.C.: NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58(3), 257–266 (1996)

    Article  Google Scholar 

  22. de Oliveira Santos, R., et al.: NMDI application for monitoring different vegetation covers in the Atlantic Forest biome, Brazil. Weather Clim. Extremes 33, 100329 (2021)

    Google Scholar 

  23. Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Murayama, Y., Ranagalage, M.: Sentinel-2 data for land cover/use mapping: a review. Remote Sens. 12(14), 2291 (2020)

    Article  Google Scholar 

  24. Wang, L., Qu, J.J.: NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 34, L20405 (2007). https://doi.org/10.1029/2007GL031021

  25. Brivio, P., Lechi-Lechi, G., Zilioli, E.: Principi e metodi di telerilevamento (2006)

    Google Scholar 

  26. Carlson, T.N., Ripley, D.A.: On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62(3), 241–252 (1997)

    Article  Google Scholar 

  27. Baghdadi, N., Bernier, M., Gauthier, R., Neeson, I.: Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens. 22(1), 71–88 (2001)

    Article  Google Scholar 

  28. Satalino, G., Balenzano, A., Mattia, F., Davidson, M.W.: C-band SAR data for mapping crops dominated by surface or volume scattering. IEEE Geosci. Remote Sens. Lett. 11(2), 384–388 (2013)

    Article  Google Scholar 

  29. Meyer, F.: Spaceborne Synthetic Aperture Radar: Principles, data access, and basic processing techniques. Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, pp. 21–64 (2019)

    Google Scholar 

  30. Yamaguchi, Y., Moriyama, T., Ishido, M., Yamada, H.: Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 43(8), 1699–1706 (2005)

    Article  Google Scholar 

  31. Steele-Dunne, S.C., Friesen, J., Van De Giesen, N.: Using diurnal variation in backscatter to detect vegetation water stress. IEEE Trans. Geosci. Remote Sens. 50(7), 2618–2629 (2012)

    Article  Google Scholar 

  32. Hobbs, S., Ang, W., Seynat, C.: Wind and rain effects on SAR backscatter from crops. Eur. Space Agency-Publ.-ESA SP 441, 185–190 (1998)

    Google Scholar 

  33. Wagner, W.: Soil moisture retrieval from ERS scatterometer data, vol. 49. Inst. für Photogrammetrie u. Fernerkundung d. Techn. Univ (1998)

    Google Scholar 

  34. Esch, S.: Determination of Soil Moisture and Vegetation Parameters from Spaceborne C-Band SAR on Agricultural Areas (2018)

    Google Scholar 

  35. Meneses-Tovar, C.L.: NDVI as indicator of degradation. Unasylva 62(238), 39–46 (2011)

    Google Scholar 

  36. Kaplan, G., Avdan, U.: Monthly analysis of wetlands dynamics using remote sensing data. ISPRS Int. J. Geo-Inf. 7(10), 411 (2018)

    Article  Google Scholar 

  37. van Emmerik, T., Steele-Dunne, S.C., Judge, J., van de Giesen, N.: Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans. Geosci. Remote Sens. 53(7), 3855–3869 (2015)

    Article  Google Scholar 

  38. Fracasso, G.: L’impatto del pirodiserbo sulla comunitá ornitica del canneto. Atti Convegno Zone umide d’acqua dolce-Tecniche e strategie di gestione della vegetazione palustre-Quaderni Riserva Naturale Paludi di Ostiglia 1, 71–80 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Dubbini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubbini, M., De Giglio, M., Salvatori, C. (2022). SAR and Multispectral Data Contribution to the Monitoring of Wetland Ecosystems Vulnerable to Climate Change. In: Borgogno-Mondino, E., Zamperlin, P. (eds) Geomatics for Green and Digital Transition. ASITA 2022. Communications in Computer and Information Science, vol 1651. Springer, Cham. https://doi.org/10.1007/978-3-031-17439-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17439-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17438-4

  • Online ISBN: 978-3-031-17439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics